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Abstract

This paper presents an investigation of residual policy learning (RPL) for simple
manipulation tasks. We focus on planar sliding and pushing, pick-and-place,
nut assembly, and peg-in-hole insertion. In such tasks, simple hand-designed
controllers can make progress toward completing tasks, but often fail to precisely
satisfy goals. While reinforcement learning can achieve consistent task completion,
learning policies from scratch can be computationally expensive. We hand-design
simple controllers with imperfect success rates for each of our tasks, and implement
deep deterministic policy gradient (DDPG) with hindsight experience replay (HER)
in the sparse reward setting case and Soft-Actor Critic (SAC) in the dense reward
setting case to modify our simple controllers and achieve success rates closer to
1. We also learn a policy from scratch using DDPG and HER for each task in a
sparse reward setting and compare results across methods. We find that learning
an effective policy from residuals is faster than from scratch. We achieve high
success rates for pushing and pick-and-place. For sliding, our only impulsive task,
we never achieve consistent success from any policy. The code for this work can
be found at https://github.com/nsidn98/Residual-Policy-Learning

1 Introduction

Solutions for simple manipulation tasks frequently have intuitive elements that can be incorporated
into hand-designed controllers. A pick-and-place controller may locate a gripper around the object,
close the gripper jaws, and move toward the goal location. A pushing controller may position a
manipulator behind the object and move it in the direction of the goal. However, straightforward
implementations of these intuitive solutions may be imperfect due to the various conditions that can
arise. For instance, if an object being pushed deviates to the side of the manipulator, the manipulator
should take corrective action to stabilize the push (a behavior that may not be encoded in a simple
hand-designed controller).

Various works have approached robotic manipulation tasks [1, 2, 3, 4] and humanoid-based tasks
[5, 6, 7, 8, 9] using reinforcement learning (RL). The main problem with learning policies using RL
is the bad sample efficiency of the algorithms to learn good policies quickly and the deep neural
networks used to parametrize the agents being data-hungry. In general reinforcement learning
problems, during the exploration phase the agent takes random actions to explore the policy-space. In
a sparse reward setting, reaching the desired goal with random exploration is quite rare and hence the
number of iterations required to learn to complete the task is quite large. In some complex tasks, it
is possible that the agent never learns to complete the task. This motivates the use of model-based
control frameworks as baselines for the learning algorithm. In experimental settings, an additional
drawback of using reinforcement learning alone is that random exploration of the action space on a
real robot may not be safe. Although there are different exploration strategies in the RL literature
where the agent is incentivized to explore novel regions in the observation space [10, 11, 12, 13, 14],
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applying these models for robotic learning could be harmful where the exploratory behaviour of RL
could be a safety concern. For these reasons, [15, 16] propose to learn residual policies.

A primary advantage of learning residuals over a conventional controller, compared to learning a
policy from scratch is that, because the controller begins with prior information of useful (albeit
suboptimal) actions, the agent is forced to visit states which are most relevant to the optimal solution.
A random exploration in the policy-space in nearby regions of the controller actions can help to
improve the sample efficiency of the RL agent to learn to complete the task especially in a sparse
reward setting where the agent is rewarded only when it reaches the goal state. Another advantage
is that the initial controller (which has been designed manually) would ensure the exploration of
(relatively) safer regions in the policy-space.

One can think of RPL as biasing the exploration toward the state distribution of the controller. A
reduction in the sample complexity in training can be explained by the reduction in exploration
required to obtain the goal reward.

In this work, we use reinforcement learning over the residuals from basic hand-designed controllers
for our tasks. In Section 3 we review the RL principles we use in our implementation. The RPL
algorithm is defined in Section 4. In Section 5, we introduce the baseline controllers. Learning
residuals from over imperfect baseline controllers enables significantly higher sample efficiency, as
presented in Section 6. In addition to studying RPL we have also made small contributions to the
robotics community by identifying and reporting bugs/issues in published tools and works. These are
detailed in Appendix C.

2 Related Work

In [15] and [16], the authors propose to learn residual actions over conventional controllers to
optimise policies. The authors demonstrate good performance with complex manipulation tasks
where imperfect controllers are available. In [15], Silver et al. focus on a set of simulated manipulation
tasks that highlight challenging conditions like noise and model misspecification. Our work is largely
an implementation of the methods outlined in [15], featuring some of the same manipulation tasks.
Johannink et al. [16] show simulated and experimental success in applying a controller using residuals
found with reinforcement learning to a block assembly task. Zeng et al. [17] use deep networks
to learn residuals on control parameters for the tossing task, resulting in 85% accuracy in tossing
arbitrary objects into bins. This demonstrates that residual learning can be successful for impulsive
tasks, in which the manipulator can only influence the object for a fraction of the episode over which
the task is attempted.

There has also been work on using learning to improve physics models [18, 19]. This can be seen as
a form of residual learning with a model-based controller. In contrast, our work focuses on learning
residuals directly on the policy.

Schaff et al. [20] demonstrate an implementation of RPL that is algorithmically quite similar to the
aformentioned work, but instead adjusts a human’s actions in controlling a flight simulator (among
other examples). This demonstrates the breadth of applicabilty of RPL approaches, from fully
autonomous systems to assistive technology.

3 Preliminaries and Background

3.1 Reinforcement Learning

Reinforcement Learning (RL) tackles sequential decision-making problems with the goal of max-
imising the expected rewards. An agent learns how to make optimal actions by interacting with
the environment and learning from trial and error. The stochastic process that emerges from the
interaction with the environment is modelled as a Markov Decision Process (MDP) [21]. The MDP is
defined by a tuple 〈S,A, T ,R, γ〉, where S is the environment’s state space, A is the agent’s action
space, T is environment dynamics also called as the transition function, R is the reward function,
defining how the agent is rewarded for its actions and γ ∈ [0, 1] is a factor used to discount rewards
over time. At any given timestep the agent observes the state of the environment, s ∈ S and chooses
an action a ∈ A based on the policy π(s|θ) : S → A where θ contains the parameters of the policy.
After taking the action, the agent moves on to the next state s′ ∈ S according to the transition function
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s′ = T (s, a) : S ×A → S . Simultaneously, the agent receives a reward r = R(s, a) : S ×A → R.
The aim of the agent is to maximise the expected return J(θπ) = Est,at∼π

∑
t γ

t−1R(st, at) where
the subscript t indicates the time step.

3.2 Deep Deterministic Policy Gradient

Policy Gradient algorithms maximise the expected return J(θπ) by updating θπ in the direction
of ∇θπJ(θπ). In particular, Deep Deterministic Policy Gradient (DDPG) [22] learns deterministic
policies where deep artificial neural networks are used as function approximators. DDPG belongs to
a class of algorithms called the actor-critic methods [23] where there are two networks: actor and
critic. The critic learns the action-value function and the actor updates the policy in a direction as
suggested by the critic. The actor (policy) network a = π(s|θπ) maps states to deterministic actions
and the critic (action-value) network Qπ(s, a|θQπ ) where θQπ contains the critic parameters returns
an estimate of the total expected returns starting from state s and by taking an action a and then
following the policy π. The algorithm alternates between two stages. First it collects experience using
the current policy with an additional noise sampled from a random processN for random exploration,
i.e. a = π(s|θπ) +N . The transitions experienced 〈s, a, r, s′〉 are stored in a replay buffer D. These
transitions are later sampled randomly to learn the actor and critic networks. The critic is learnt by
minimising the following loss to satisfy the Bellman equation:

L(θQπ ) = Es,a,r,s′∼D
[
(Qπ(s, a|θQπ )− y)2

]
(1)

y = r + γQπ(s′, π(s′)|θQπ ) (2)

In practice, minimising Eq 1 is numerically unstable since the target value is a function of Qπ, and
is therefore updated in each iteration as well. Similarly to DQN [24], DDPG stabilises the learning
by obtaining smoother target values y = r + γQπ

′
(s′, π′(s′)|θQπ′ ), where π′ and Qπ

′
are target

networks. The weights of π′ and Qπ
′

are exponential moving averages of the weights of π and Qπ
over iterations, respectively. The actor is updated using the following policy gradient:

∇θπJ(θπ) = Es∼D
[
∇aQπ(s, π(s)|θQπ )∇θππ(s|θπ)

]
(3)

Intuitively, this updates the actor network parameters in the direction which maximizes the discounted
sum of future rewards.

3.3 Hindsight Experience Replay

Hindsight Experience Replay (HER) [1] was introduced to learn policies from sparse rewards,
especially for robot manipulation tasks. The main idea of the algorithm is to view the states achieved
in an episode as pseudo goals (achieved goals) to facilitate learning even when the desired goal has
not been achieved during the episode. Specifically, we let 〈s||g, a, r, s′||g〉 be the original transition
obtained in a rollout of an episode, where || denotes the concatenation operation and g is the desired
goal state of the task. In normal cases, the agent would be rewarded only when g is achieved, which
may occur very rarely during learning, especially when the policy is far from optimal in the initial
phases of the learning phase (random exploration). In HER, g is replaced by an achieved goal state g′
which is randomly sampled from the states reached in an episode. This generates a new transition
〈s||g′, a, r, s′||g′〉 which is more likely to be rewarded. The generated transitions are saved into an
experience replay buffer and can be used by off-policy algorithms like DQN [24] and DDPG [22].
In essence, HER allows to learn from failures (not reaching the desired goals) and leverage them to
ultimately learn to achieve the desired goal when g′ → g.

3.4 Soft Actor Critic

Soft Actor Critic (SAC) [7] is an actor-critic type algorithm which optimizes a stochastic policy
in an off-policy way, forming a bridge between stochastic policy optimizations and DDPG-style
algorithms. SAC uses entropy regularization where entropy is a measure of randomness in the policy.
The policy is trained to maximize the expected return and entropy. The entropy term has a relation
to the exploration of the agent and hence increasing the entropy results in more exploration. Just
like DDPG, the algorithm alternates between two stages. SAC has one policy network πθ and two
critic networks Qφ1

, Qφ2
. First it collects experience using the current policy π and the transitions
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〈s, a, r, s′〉 are stored in a replay buffer D. Later these transitions are randomly sampled to learn the
actor and critic networks. The critic is learnt by minimising the following loss:

L(φi) = Es,a,r,s′∼D
[
(Q(s, a|φi)− y)2

]
for i = 1, 2 (4)

y = r + γ
(

min
i=1,2

Q(s′, ā′|φi)− α log πθ(ā
′|s′)

)
, ā′ ∼ πθ(.|s′) (5)

To stabilise the training, target networks are used to calculate the target y instead of the current
networks. y = r + γ

(
mini=1,2Q(s′, ā′|φ′i)− α log πθ(ā

′|s′)
)
. The actor is updated by one step of

gradient ascent using:

∇θπEs∼D
[

min
i=1,2

Q(s, ā′θ(s)|φi)− α log πθ(ā
′
θ(s)|s)

)]
, ā′θ(s) ∼ πθ(′|s) (6)

4 Residual Policy Learning

The algorithm underlying RPL is no different from any other RL algorithm. The key insight comes
from the observation that the baseline policy (in our example, a simple hand-designed state machine
controller) is not parameterized by the deep network, so the gradient of the policy (the sum of the
baseline and the residual policy) with respect to the network parameters is just the gradient of the
residual. The policy is given by:

Πθ(s) = πθ(s) + f(s) (7)
where Πθ(s) is the policy, f(s) is the baseline controller, and πθ(s) is the residual we aim to learn.
As described in [15], we can think of the policy as a residual MDP, M (Π) = (S,A,R, T (Π), γ),
where T (Π)(s, a, s′) = T (s, f(s) + πθ(s), s

′). Therefore, the policy can be learnt simply by using
standard DDPG + HER, as described in the preceding sections.

Despite using an identical algorithm, the RPL framework converges more quickly than learning from
scratch. DDPG uses stochastic policy gradients to update the network parameters in the direction
which maximizes reward. In addition to the actor network, a critic network is trained as a variance-
reducing baseline that ensures, in essence, that each update to the network parameters improves policy
performance with respect to the reward function. The critic is initialized with respect to the baseline
policy through training for a "burn-in" period on the baseline (the action policy is not modified during
this time). Equating the critic with the baseline policy through the use of a burn in period effectively
means that parameter updates will be in the direction that improves upon the baseline’s performance.
This is a powerful variance-reduction technique, which explains the faster convergence for residual
policies when compared with learning from scratch.

4.1 Initializing the Residual

One desirable property expected from RPL is that it should not make good policies worse. In essence,
when the initial policy is perfect, we would like to have the residual policy to not have any influence
on the action taken in the environment. ie. πθ(s) = ~0,∀s ∈ S. Therefore as done in [15], the final
layer of the actor is initialised with zero weights.

4.2 RPL with Actor-Critic Methods

RPL learns a residual over the output of the baseline controller. Actor-critic methods like DDPG,
involve a policy (actor) as well as action-value function (critic). Thus if we initially have a perfect
controller and a poor critic, the policy performance may degrade as the actor is trained in conjunction
with the critic. Therefore, Silver et al. [15] propose to train the critic alone for a "burn-in" period
by leaving the actor fixed. The burn-in length is determined automatically by monitoring the critic
loss function. Although the paper suggests to start training the actor once the critic loss is below
a threshold, we found out that this is not the case in their implementation code (more details in
Appendix C.1). Instead we choose to monitor critic loss and start the actor training once the difference
in the critic loss between successive epochs is less than β. We use β = 0.005 across all experiments.
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5 Tasks and Basic Controllers

5.1 Slide Task

The goal of the slide task is to slide a cylindrical puck on a frictional table from a randomized initial
position on the table to a randomized goal position on the table. The slide task is the only impulsive
task considered in this work. That is, the hand-designed controller pushes the puck for a small fraction
of the distance from its initial state to the goal state, then allows the puck to slide alone. The slide
environment is shown in Figure 2.

5.1.1 FetchSlideSlap

The FetchSlideSlap controller assumes that the object instantaneously takes on the velocity of the
end effector at contact (elastic collision, where the puck and the end effector are of the same mass),
and the object slides under the influence of kinetic friction to its goal. See implementation details in
Appendix B.1.

5.1.2 FetchSlideFriction

The FetchSlideFriction controller assumes that the object slides with the end effector for a short
stretch (1/5 of the distance between the object’s initial position and the goal), giving the object the
opportunity to take on the velocity of the end effector over a distance of constant acceleration. The
object then slides under the influence of kinetic friction to its goal. See Appendix B.2 for equations
used for the motion of this controller.

The idea is to improve controller accuracy by eliminating the reliance on a sloppy impulse model
(such as the one used in FetchSlideSlap). In practice, however, the slap controller performs better than
the friction controller. This is because for some initial conditions, the end effector makes contact with
the object along an edge, causing the object to slide relative to the end effector and get released at a
slower velocity than intended. This unstable behavior during pushing is a drawback of controlling
only the end effector position and not orientation, which is a feature of the OpenAI environment
we chose to use. While it is possible to stabilize this unstable behavior with a more sophisticated
baseline controller, our intention was to write simple controllers by hand and allow RPL to learn to
correct the policies.

5.2 Pick-and-place Task

The goal of the pick-and-place task is to bring a cube object from a random initial position on a table
to a random goal position in three dimensions. The pick-and-place environment is shown in Figure 4.

5.2.1 FetchPickAndPlacePerfect

FetchPickAndPlacePerfect uses a proportional controller to move the gripper toward the object
until it is within a threshold distance. FetchPickAndPlacePerfect then opens the gripper, lowers
the gripper within a height threshold, and closes the gripper. Finally, FetchPickAndPlacePerfect
uses a proportional controller to move the gripper with the object to the goal position. Because this
controller is executed in (an almost) closed-loop fashion with perfect state information, it is virtually
always successful. Note: the state of whether the object has been picked up or not is not checked in a
closed-loop fashion. Rather it just executes the grabbing action for one time-step.

5.2.2 FetchPickAndPlaceSticky

FetchPickAndPlaceSticky is similar to FetchPickAndPlacePerfect but takes the same action as in the
previous time-step with a probability of 0.5. This was implemented for the purpose of introducing
imperfection to the controller so that the qualities of the residual learning could be studied.

5.3 Push Task

The push task is similar to the slide task, but the end effector slides with the object through the
duration of the episode. The push environment is shown in Figure 3.
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5.3.1 FetchPushImperfect

At each time step, the end effector moves the object in the direction of the goal with a small
displacement proportional to the distance remaining to the goal. The commanded displacement is
sufficiently small, and the goal within the workspace of the robot, such that the end effector remains
in contact with the puck as it guides the puck to its goal position.

5.3.2 FetchPushSlippery

This implementation uses the same controller as in FetchPushImperfect, but the friction coefficient
between the table and the puck is changed from 1.0 to 0.1. This causes the commanded displacement
to move the puck by a larger amount at each timestep, occasionally resulting in loss of contact
between the end effector and the puck between actions.

5.4 Nut assembly Task

(a) Nut Assembly Environment (b) Peg-in-Hole Environment

Figure 1: Visualizations of the two robosuite environments, Nut Assembly and Peg-in-Hole, we used
to experiment with pose controllers.

The nut assembly task drops an octagonal nut (with a tab on one face) into the workspace at a random
position and orientation (orientation only varies about world z, since the nut is constrained to land on
the table). The robot arm must then pick up the nut and drop it onto a corresponding peg (see Figure
1a). The controller we implement is a simple proportional controller in pose space + state machine
which commands the robot to move until it is sufficiently close in x and y to the nut, then reorient the
gripper such that it will have an antipodal grasp on the nut, then pick up the nut. Finally, the robot
carries the nut to the peg and drops it onto the peg once it is sufficiently close the the peg in x and
y (see Appendix B.3 for implementation details). The baseline controller achieves a roughly 60%
success rate at the nut assembly task. The primary failure modes we noted were from the gripper
grasping the nut too quickly (and therefore the nut would slip or snap out of the gripper in the process
of being picked up), or getting lodged on the peg after being dropped onto it. Both of these failures
could be mitigated through more careful tuning of gains/thresholds for the state machine, but we
leaned on the residual network to make those adjustments for us.

5.5 Peg-In-Hole

The peg-in-hole task begins with two robot arms separately holding a cylindrical peg and a square
panel with a hole, as shown in Figure 1b. The robot arms must be controlled such that the peg enters
the hole. We implemented trajectory optimization to plan three keyframe poses for each of the robots
to pass through, where the keypoints satisfy the following requirements (respectively):

1. The peg is sufficiently in far in front of the panel (distance is greater than peg length).
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2. The peg distance from panel is still greater than the peg length. The peg is orthogonal to
panel. The peg is centered over hole.

3. The peg is inside the hole.

We use the sum of the magnitudes of dispacements between keyframes as a cost, including the
movement from the initial position to the first keyframe. While we do not enforce in the optimization
that the keyframes are within the robot workspaces, the cost encourages them to stay close to the
initial position which in practice usually results in the keyframes found being within the workspace. A
detailed description of the optimization problem that is posed and solved in this controller is included
in Appendix B.4.

Ultimately we were unable to implement and simulate this controller because of a bug in Robosuite
that prevents execution of absolute poses that are commanded. Appendix C.3 details the discovery of
this bug. We also attempted to control to the desired poses via small "control deltas," or relative pose
commands, which are properly executed in Robosuite. However, this approach was not successful
because, without solving the full constrained trajectory planning problem, there was no guarantee that
the path chosen for the incremental movements between keyframe poses would be feasible. Appendix
B.4 contains a detailed description of a method we attempted for breaking the reorientation between
keyframes into control deltas.

6 Results

For each of the tasks with which we performed RPL (slide, push, and pick-and-place), we present
success rate as a function of number of simulation steps for:

• Baseline controllers (hand-designed, with constant success rate)
• RPL over each baseline controller
• A policy learned from scratch (DDPG + HER)

All empirical results are presented with median and one standard error across five different seeds.
Although we did attempt to learn policies from scratch and learn residues over controllers for the nut
assembly task and the peg-in-hole task as mentioned earlier, we do not have the plots ready for those
experiments as they are still in progress (training not yet completed).

For push, slide and pick-and-place tasks, we see that, as expected, learning from scratch starts with
a success rate near 0, and learns more slowly than does RPL. Success rates for all learning-based
policies eventually converge near 1 for push and pick-and-place, but below 0.6 for slide. As noted in
Section 5.1, the slide task is fundamentally different from the other tasks because it is impulsive; the
end effector influences the object for a small fraction of the episode.

The RPL success rate shows an initial dip in performance once the burn-in of the critic is done. This
same phenomenon is seen and discussed by Silver et al. [15]. Silver et al. explain this dip by saying
that the critic is initialized poorly with respect to the baseline policy, and may degrade the policy
once the actor starts learning. As discussed in Section 4, this is the purpose of the burn-in period.
However, even after the burn-in period, the critic still causes the policy to degrade before correcting
and compensating. Some hyperparameter tuning for the burn-in parameter β may alleviate the extent
of the initial dip, but since (as noted by Silver et al. [15]) this initial dip in success rate does not
significantly delay success rate convergence, we did not pursue this line of inquiry. While Silver et al.
have proposed this reason for the initial policy dip, we believe the dip could be caused by a sudden
change in the actor’s learning rate from 0 to 0.001 at the end of the burn-in period. Immediately
following this change, the actor samples actions far from the baseline controller, and as a result sees
degraded performance. Because the replay buffer still contains good state transitions, the actor is able
to recover quickly.

6.1 Slide Task

Figure 2 shows results for the slide task, using the FetchSlideSlap and FetchSlideFriction controllers as
baselines. As discussed in Section 5.1, FetchSlideSlap provides a more successful baseline. However,
the RPL success rates over these baselines converge at approximately the same rate following the
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initial dip. The slide task may be relatively less successful than the other two tasks because it is
an impulsive task in a sparse reward setting. This means that the success rate suffers greatly from
imperfect action choices, because the opportunity for feedback is so limited. If dense rewards were
used instead, we might see higher success rates as a result of modifying the definition of success: in a
dense reward setting, slides that got close to the target position would be rewarded to some extent.
This would benefit the other two tasks comparitively less. Since they are feedback policies, they have
the opportunity to correct imperfect actions in subsequent timesteps.

Figure 2: Residual Learning results (left) for the Slide task (visualized at right).

6.2 Push Task

Figure 3 shows results for the push task, using FetchPushImperfect and FetchPushSlippery as
baselines. The success rates from the two baselines start near each other around 0.8. The RPL over
FetchPushSlippery shows a greater initial dip, and subsequently takes slightly longer to reach success
rates near 1. Compared to the slide task, we see a larger delay in the DDPG+HER (from-scratch)
policy catching up in performance, likely because the baseline policies were more successful in the
push task.

Figure 3: Residual Learning results (left) for the Push task (visualized at right).

6.3 Pick and Place Task

Figure 4 shows results for the pick-and-place task, using FetchPickAndPlacePerfect and Fetch-
PickAndPlaceSticky as baselines. RPL over FetchPickAndPlacePerfect, which starts with a near-
perfect success rate, sees a much larger dip than does RPL over FetchPickAndPlaceSticky, resulting
in RPL over FetchPickAndPlacePerfect regaining high success rates only slightly faster than RPL
over FetchPickAndPlaceSticky. In pick-and-place, compared to push, the learning-based policies
do not quite converge to perfect success rates. They converge slightly below the success rate of
the FetchPickAndPlacePerfect baseline controller; the initial "perfect" policy has been forgotten.
This is an extension of the imperfect critic phenomena we have already discussed. If the critic were
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initialized perfectly, or fully "burned in" before the actor started learning, then the critic would know
that the initial policy was already perfect. Instead, RPL adds small residuals to the baseline policy.
Unlike in the push task, completion of the pick-and-place task relies on a binary element: whether
or not the object is grabbed. While the critic in the push task is similarly imperfect, small changes
in the policy lead to small changes in the object trajectory, which can still lead to goal satisfaction.
But in the pick and place task, failing to pick up the object will never lead to goal satisfaction. If
the gripper is not aligned perfectly with the object when attempting to close the gripper, the grasp
may fail. Additionally, the action used to define the gripper state is a number between -1 and 1. In
the baseline controller we always used a value of 1 for open gripper states, but if RPL reduces this
number slightly, the gripper may not open wide enough to fit around the object.

Figure 4: Residual Learning results (left) for the Pick and Place task (visualized at right).

Ultimately, our results for the Nut Assembly and Peg-in-Hole environments are incomplete for two
reasons. Our implementation of SAC + dense rewards on these more complicated tasks suffered as a
result of having a larger action space (controlling orientations as well as positions) and longer time
horizon (500 steps per episode, rather than 100). The convergence rate of policy gradient methods is
a counting game, and is dependent on the variance in the gradient. Although good baselines from
analytical controllers can help drive variance down, doubling the action space and increasing the time
horizon by a factor of 5 increases variance significantly, and we have not been able to get the policy
for the Nut Assembly to converge yet. Our attempt to use trajectory optimization to plan keyframes
to solve the Peg-in-Hole task was halted by a bug in robosuite (see Section 5.5 for details).

7 Future Work

As noted throughout this work, our hand-designed controllers were frequently limited by the sim-
ulation environments we chose to work in. Being unable to command end effector orientations in
OpenAI, and being unable to command absolute poses in Robosuite, led to some loose ends in our
work that could be tied up to lead to better results. In particular, the peg-in-hole task presented in
Section 5.5, may have been an interesting demonstration of motion planning if we had been able
to properly command absolute poses in Robosuite. Learning residuals on this task would be an
interesting study on how RPL interacts with an optimization-based baseline controller, how RPL
handles complex tasks that need to be done in a sequence of phases, and how RPL behaves with
larger action spaces.

We have also posited that the reason the slide task never reached a high success rate with RPL is that,
in contrast to our other tasks, this task is impulsive. However, Zeng et al. have shown successful
use of RPL in tossing [17], which is also impulsive. A future work could investigate what factors
influence whether RL is able to successfully learn residuals for an impulsive task.

Finally, methods like DDPG + HER are powerful in stochastic settings (real-world scenarios), where
it is impossible to reproduce the same experiment twice. Good baselines (hand-designed controllers,
critic networks) can reduce variance and lead to fast convergence, even under these conditions.
Therefore, residual policy methods lend themselves naturally to experimentation and learning on real
robot systems. Ultimately, we would like to try these methods on real robots, and put these stochastic
gradient descent methods to the test in more random environments.
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A Implementational details

A.1 Model Hyperparameters for DDPG

Most of the hyperparameter values for the RPL experiments were taken from [15] with a few
exceptions.

• Actor and critic networks: three lay-
ers with 256 units each and ReLU non-
linearities and tanh for the final layer of
the actor

• Adam Optimizer [26] with learning rate
0.001 for both actor and critic

• Batch Size: 256

• Buffer Size: 106 transitions
• Polyak-averaging coefficient: 0.95

• Number of epochs: 500 (200 for push
task)

• Cycles per epoch: 40

• Batches per cycle: 50

• Test rollouts per epoch: 50

• Probability of random actions: 0.3

• Scale of Gaussian noise: 0.2

• Observation Clipping: [−200, 200]

• Action L2 norm coefficient: 1.0

• Discount Factor γ: 0.98

• Burn-in parameter β: 0.005

A.2 Model Hyperparameters for SAC

Although our experiments with SAC were not completed before the deadline, we are listing the
hyperparameters used for it:
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• Actor and critic networks: two layers
with 256 units each and ReLU non-
linearities and tanh for the final layer of
the actor

• Adam Optimizer [26] with learning rate
0.0003 for both actor and critic

• Actor network type: Gaussian policy

• Actor Gaussian log standard deviation
clipping: [−20, 2]

• Batch Size: 256

• Total number of simulator timesteps:
107

• Buffer Size: 106 transitions
• Number of simulator steps to start train-

ing: 10000

• Polyak-averaging coefficient: 0.995

• Evaluation frequency: 10 episodes
• Test rollouts per epoch: 10 (due to the

long horizon of the task, we ran only 10
times for faster training)

• Discount Factor γ: 0.99

• Temperature parameter for entropy term
α: 0.2

• Burn-in parameter β: 0.005

A.3 Environments

We implemented controllers for three Fetch environments from OpenAI (Slide, Push, and Pick and
Place) and two environments from Robosuite (Nut Assembly and Peg-in-Hole). The details of the
state and action spaces as well as the reward structure and the criteria for success for the Fetch and
Robosuite environments are detailed below.

Fetch environments:

• States are length-31 vectors containing:

– Gripper xyz position
– Object xyz position
– Object ypr orientation
– Object relative position to gripper
– Gripper finger joint state
– Object velocity

– Object rotational velocity
– Gripper joint velocities
– Gripper velocity
– Achieved goal: current position of the

object
– Desired goal: goal position of the object

• Actions are length-4 vectors containing:
– Gripper Displacement [dx, dy, dz]

– Gripper state (single value in the range [−1, 1] which specfies the degree to which the
gripper is opened or closed)

• Rewards are sparse and binary: a reward of 0 is given when the object is within a small
radius around the target location and -1 otherwise.

• Criteria for success: The episode is counted as a success if the last reward achieved in an
episode is 0. Episode lengths are 50 and do not terminate early.

Robosuite Nut Assembly environment:

• States are length-20 vectors containing:

– Robot end effector xyz position
– Robot end effector orientation (quater-

nion)
– Nut xyz position
– Nut orientation (quaternion)

– Achieved goal: current position of the
nut

– Desired goal: goal position for the nut
(peg position)

• Action are length-7 vector containing:
– End effector displacement [dx, dy, dz]

– End effector orientation change (axis-angle rotation) δ[a1, a2, a3]
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– End-effector state (single value in the range [−1, 1] which specifies the degree to which
the gripper is opened or closed)

• Sparse reward setting (DDPG+HER): a reward of 0 is given when the object is within a
small radius around the target location and -1 otherwise.

• Dense reward setting (SAC): Rewards are staged sequentially according to what stage the
agent is in.

– Reaching: rt ∈ [0, 0.1], proportional to the distance between the gripper and the nut.
– Grasping: rt ∈ {0, 0.35}, non-zero if the gripper is grasping the nut.
– Lifting: rt ∈ {0, [0.35, 0.5]}, non-zero only if nut is grasped; proportional to lifting

height.
– Hovering: rt ∈ {0, [0.5, 0.7]}, non-zero only if nut is lifted; proportional to distance

from nut to peg.
• Criteria for success: The episode is counted as a success if the last reward achieved in an

episode is 0. Episode lengths are 500 and do not terminate early.

Robosuite Peg-in-Hole environment:

• States are length-14 vectors containing:
– Robot 0 end effector xyz position
– Robot 0 end effector orientation (quaternion)
– Robot 1 end effector xyz position
– Robot 1 end effector orientation (quaternion)

• Actions are length-12 vectors containing:
– Robot 0 end effector xyz position
– Robot 0 end effector orientation (axis-angle orientation) θ[a1, a2, a3]

– Robot 1 end effector xyz position
– Robot 1 end effector orientation (axis-angle orientation) θ[a1, a2, a3]

• Criteria for success: The episode is counted as a success if the parallel distance between the
peg and hole is less than 0.06, the perpendicular distance between -0.12 and 0.14, and the
cosine of the angle between the peg and hole greater than 0.95.

B Controllers

In this section we define the mathematical equations used to design our baseline controllers.

B.1 FetchSlideSlap controller

Define the distance from the initial puck position to the goal as d. To simplify the impulse model, we
assume vee = vpuck at the moment of impact. With that in mind, we solve for vee that will allow
the puck to travel a distance d under the action of kinetic friction, before coming to rest. The kinetic
energy of the puck at the start of the episode (equivalently, the kinetic energy of the end effector
before impact) is equal to the work done by friction over the course of the slide:

1

2
mv2

ee = µmgd

vee =
√

2µgd

Since the slide environments take end effector displacements as actions, we prescribe that the end
effector must accelerate constantly from a small distance disp behind the end effector. From basic
kinematics, we know:

aee =
v2
ee

2 ∗ disp
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At each timestep before the end effector makes contact with the puck (we track the position of the end
effector relative to the goal, and once it is closer to the goal the puck initially was, we conclude that
the end effector must have made contact with the puck), we command a displacement according to:

∆d =
vt−1 + vt

2
∆t

Where vt−1 is the desired speed at the previous timestep, vt is the the desired speed at the current
timestep, and ∆t is the time between actions (this value is a parameter of the environment, and in our
case, is = 0.04 s).

B.2 FetchSlideFriction controller

Define the distance from the initial puck position to the goal as d, and let d1 and d2 be the distances
the puck slides with and without the end effector respectively, such that d1 + d2 = d. The energy lost
during the sliding period is E1 = d2µmg where µ is the coefficient of friction between the puck and
the table,m is the puck mass, and g is gravity. To frictionally deplete this energy to reach speed v2 = 0

at the goal state, the puck speed at the time of puck release must be v1 =
√

2E1/m =
√

2d2µg.

Define the distance traveled along the vector from initial puck position to goal position as path
parameter s. Starting at rest (s0 = ṡ0 = 0) and accelerating uniformly (s̈ constant) until the release
state at s1 = d1, ṡ1 = v1, we find

s̈ =
v2

1

2d1
=
d2µg

d1

Because the actions in this task are applied as discrete displacements between controller calls, we
must convert this controller to discrete displacements. Integrating once, we have

ṡ =

∫
s̈ dt =

d2µg

d1
t

Where t = 0 corresponds to the start of the push. To achieve this ṡ value via a displacement over a
timestep of size ∆t, we need

∆s = ṡ∆t =
d2µg

d1
t∆t

In simulation, we use d1 = d/5.

B.3 Nut Assembly

The nut assembly task baseline controller is an operational space pose controller. The action and
observation spaces are delineated in Appendix A.3. We use a proportional controller to drive the end
effector pose to setpoints which serve as threshold values in a hand-designed state machine. The
controller first aligns the position and orientation of the gripper to make antipodal contact with the
nut, then lowers and closes the gripper, then pulls the gripper up and moves it, holding the nut, toward
the peg. Finally, when the gripper is sufficiently close to the goal position, it drops the nut onto the
peg. The details are listed below:

• Before grasp, align positions: at each timestep, check if the distance between the (x,y)
position of the object and the (x,y) position of the gripper is within 0.01 m. If not, move in
the direction of the (x,y) position of the object with gain 20.

• Before grasp, align orientations: The object is initialized with a random rotation about world
z. We measure this rotation and, at each timestep, reorient the gripper with gain 0.2 until it
has matched the object’s rotation about world z, modulo 2π/8 (gripping the object with no
rotation about world z would lead to an antipodal grasp, and since the object is an octagon,
there are other grasps which would be equally good). We track the change in orientation
of the end effector by recording the intial orientation of the end effector, and calculating
the relative quaternion (in the frame of the initial orientation of the end effector) at each
timestep as AqB = (AqW )(W qB), where (AqW ) is the inverse of the intial gripper pose,
and (W qB) is the gripper pose measured at each timestep. We transform AqB to axis-angle
representation, then calculate the distance between the gripper axis-angle vector and the
object axis-angle vector. Once the distance is less than 0.1, we conclude that the gripper and
object are aligned.
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• Close gripper: Lower the gripper as quickly as possible (command displacement 1 at each
timestep) until the z position of the gripper frame is within 0.01 of the z position of the
object frame. Then, close the gripper.

• Move gripper up and toward the goal: Lift the gripper 0.1m above the table as quickly as
possible (command displacement 1 at each timestep), then move the gripper in the direction
of the goal with gain 20 at each time step. Once the object frame is within 0.0225m in (x,y)
of the goal frame, let go of the object and drop it onto the peg.

One of the benefits of RPL is that the various gains and thresholds of the hand-designed state machine
do not need to be laboriously tuned to improve performance. Going from a position controller to
a pose controller between the pick and place task and the nut assembly task is a small increase in
problem complexity, but even this increase introduced a significant number of new parameters and
state machine thresholds to tune at once. As problem complexity continues to increase, it becomes
increasingly tedious and challenging to hand-design better performance; with RPL, it is reasonable to
design a sloppy controller and expect the network to optimize its behavior for you.

B.4 Peg-in-hole

The optimization problem formulated to solve the peg-in-hole task is given below.

minimize
p0i ,p

1
i ,q

0
i ,q

1
i ,i=1,2,3

∑
i

(
||p0

i − p0
i−1||+ ||p1

i − p1
i−1||

)
subject to ||q0

i || = 1 ∀i
||q1
i || = 1 ∀i(
q1
1p

0
1q

1
1
−1 · [0, 0, 1]T

)
> lpeg(

q1
2p

0
1q

1
2
−1 · [0, 0, 1]T

)
> lpeg(

q1
2p

0
1q

1
2
−1 · [1, 0, 0]T

)
= 0(

q1
2p

0
1q

1
2
−1 · [0, 1, 0]T

)
= 0

q0
2 [0, 0, 1]T q0

2
−1 + q1

2 [0, 0, 1]T q1
2
−1 = 0(

q1
3p

0
1q

1
3
−1 · [1, 0, 0]T

)
= 0(

q1
3p

0
1q

1
3
−1 · [0, 1, 0]T

)
= 0

q0
3 [0, 0, 1]T q0

3
−1 + q1

3 [0, 0, 1]T q1
3
−1 = 0(

q1
3p

0
1q

1
3
−1 · [0, 0, 1]T

)
= lpeg/2

Here, q0
i is the quaternion for the peg at keyframe i, and p0

i is the position of the peg at keyframe i.
p1
i and q1

i correspond to the position and quaternion for the hole. The poses of the robots 0 and 1
can be directly calculated from these values because the transformation from the robot 0 and 1 end
effectors to the peg and hole respectively are constant in the peg and hole frames respectively. lpeg is
the length of the peg. The given constraints ensure that:

• All quaternions have unit magnitude
• The peg, represented in the hole frame, at keyframes 1 and 2, has z-component larger than
lpeg .

• The peg, represented in the hole frame, at keyframes 2 and 3, has 0 x- and y-component (the
peg is centered over the hole).

• The z directions of the hole and peg frames are antiparallel at keyframes 2 and 3 (the peg is
aligned with the hole).

• The peg, represented in the hole frame at keyframe 3, has z-component equal to lpeg/2 (the
peg has entered the hole).

Delta pose controller

Because we could not command absolute poses for the peg-in-hole task, we implemented a method
to incrementally command interpolated delta poses to try to get to the absolute desired pose. For two
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poses described by quaternions W q1 and W q2, representing transformations between the world frame
W and poses 1 and 2, the delta rotation, or the transformation between poses 1 and 2, is given by

1q2 =1 qWW q2 = (W q1)−1W q2

1q2 can be converted to an axis-angle representation, {a1,2, θ1,2}. To command an incremental
rotation in the direction of the desired pose 2, we can scale θ1,2 by some factor δ: {a1,2, δθ1,2}.
Here, a1,2, which is found using a typical quaternion-to-axis-angle converter, will be represented in
the frame associated with pose 1, but we want to command poses relative to the world frame, so the
orientation we must command is

{W q1(a1,2)(W q1)−1, δθ1,2}

The interpolation performed in this method (via scaling the angle in the axis-angle representation)
is spherical linear interpolation (Slerp) [27]. Position changes can be interpolated simply and
commanded incrementally as well. While this interpolation would work for small pose changes, we
frequently needed to command large pose changes for the peg-in-hole task, and faced the problem
that the intermediate/interpolated poses were not necessarily a feasible path by which to get to the
goal pose.

C Bugs found

In this section we describe the different bugs we found in other works (not our own) while implement-
ing this work. The value and importance of their work to our project should not be underestimated; we
simply wanted to report these bugs in case others come across them, and explain how they modified
our approach to the project.

C.1 Burn-in Parameter (β) in RPL

While we were trying to choose the value of the burn-in parameter β, we asked the authors of the
Residual Policy Learning paper for some insights and they pointed us to their repository. There, we
noticed that instead of monitoring the critic loss (as mentioned in their paper) for burning the critic
they were monitoring the the difference in actor losses in successive epochs. To this end, we reported
the authors regarding this and the authors agreed that it was a mistake on their side and opened an
issue in their repository to warn others regarding this. Link to Issue #14 in the repository. In our
experiments, because we monitor the difference in critic losses in successive epochs(instead of actor
losses), we had to change the value of the burn-in parameter β = 0.005 from the value of β = 1 they
used in the paper. This decrease in the value of β was partly because of the scale of actor losses was
more than the critic losses.

C.2 Changes in friction parameters in robots

While we were trying to figure out how to change the friction coefficient parameters in MuJoCo,
we referred the Residual Policy Learning authors’ repository and found that they were changing the
friction coefficient values between all the joints instead of just the friction coefficient values between
the table and the puck (Permalink to the line). Although, this does not cause much of a difference in
the training of the residual policies, we felt that it was important to point this out for anyone intending
to work with MuJoCo as it can be easily overlooked while modifying the environments.

C.3 Robosuite absolute pose controller

One of the robot arm controllers available in Robosuite is OSC_POSE, which is meant to control
the robot arm to an absolute position and orientation commanded. When trying to use OSC_POSE,
we found erratic arm flailing. The Robosuite developers pushed an update to correct the behavior
we reported, and while the updated version correctly positions the end effector at the commanded
position, it does not match the commanded orientation. We reported this followup issue but did not
receive a response. Link to Issue #139 in the Robosuite repository.
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https://github.com/k-r-allen/residual-policy-learning/blob/ab330ee425463459f1dd7daa4b571104ae449118/rpl_environments/rpl_environments/envs/residual_fetch_push_env.py#L18
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