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Abstract

Mixed autonomy (MA) scenarios – where both autonomous vehicles (AVs) and
human drivers share the same road – will become increasingly prevalent as au-
tonomous vehicles are deployed into society. From a reinforcement learning
perspective, this offers a variety of interesting research opportunities such as mod-
eling problems with very large state spaces, multiple agents, and exploring reward
design with fairness constraints. In this work we try to replicate an existing bench-
mark for the bottleneck environment and investigate the changes in learned agent
policies and performance when explicitly considering fairness and human driver
model variation during training. We find that adding a fairness term to the reward
function significantly changes the learned behavior, allowing all vehicles to move
through the bottleneck at approximately equal average speeds while decreasing the
throughput through the bottleneck by small and at times insignificant amounts.

1 Introduction

In recent years, several sequential decision-making tasks have been tackled using reinforcement
learning methods. Many works have tried using various methods like imitation learning[1, 2],
reinforcement learning [3, 4], supervised and self-supervised learning [5, 6] for the autonomous
driving task. With many companies like Google, Waymo, Tesla, etc. deploying autonomous vehicles
in the real-world, mixed autonomous scenarios are inevitable where autonomous vehicles and human-
driven vehicles share the same road networks. With the emergence of rich road network simulators
like Flow [7] and SUMO [8] researchers have started investigating traffic control in these scenarios.

In this project, we consider the problem of traffic congestion in a previously-published bottleneck
benchmark scenario [9]. Previous works have focused on optimizing throughput through the bottle-
neck, with less focus on ensuring fairness in the optimal solution and assessing robustness to possible
environmental variation. Thus, our project explores the impacts of explicitly considering fairness
and more human driver variation while training the AVs on their throughput-increasing effects in the
bottleneck environment.

2 Related Works

In [9] the authors present benchmarks for the performance of reinforcement learning algorithms on
four classic traffic scenarios: figure eight, merge, grid, and bottleneck. We base most of our work
on this paper. Vinitsky et al. (2020) [10] study a fully decentralized mixed autonomy reinforcement
learning (MARL) control scheme on a mixed autonomy two-stage bottleneck environment and report
a significant improvement on the vehicular throughput as compared to hand-designed controllers.
To the best of our knowledge, we did not find any related work which investigate fairness in the
MA scenario explicitly or which add variation in human driver models parameters. Works we have
seen use one human driver model and add some random noise to the actions they take, which is very
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Figure 1: The bottleneck environment. Edges 1,2 and 3 have four lanes, edge 4 has two lanes and
edge 5 has one lane. The red circles denote the edges where lanes merge to a smaller number of lanes.

different from having human drivers with different underlying driving behavior, such as different car
following behavior.

3 Method

3.1 Environment

We use Flow [7] along with SUMO (Simulation of Urban MObility) [8] which is a framework for
deep reinforcement learning (RL) and control experiments for traffic simulation. In particular we
use the bottleneck0 and the bottleneck1 environment for our experiments. In the bottleneck
environment as shown in Figure 1, the lanes reduce from four to two to one. The goal of this problem
is to maximise the total outflow of the vehicles in a mixed-autonomy setting. In the environment, each
segment of the road is termed as an "edge" (numbered from 1-5 in Figure 1). The Markov Decision
Process (MDP) [11] for the bottleneck environment is as follows:

• States: The mean positions and velocities of human drivers for each lane for each edge
segment. The mean positions and velocities of the connected autonomous vehicles (CAVs)
on each segment. The outflow of the system in vehicles per/hour over the last 5 seconds.

• Actions: For a given edge-segment and a given lane, the RL action shifts the maximum
speed of all the CAVs in the segment from their current value. By shifting the max-speed to
higher or lower values, the system indirectly controls the velocity of the RL vehicles.

• Rewards: rt =
i=t∑

i=t− 5
∆t

nexit(i)
5

∆t∗nlanes∗500

where nexit(i) is the number of vehicles that exited

the system at time-step i. Basically, this is the outflow of the vehicles over the last 5 seconds
normalised by the number of lanes, nlanes and a factor of 500.

In our experiments we use two different variants of the bottleneck environment:

• bottleneck0: inflow = 1900 veh/hour, 10% CAV penetration. No vehicles are allowed to
lane change. (S ∈ R141,A ∈ R20, T = 1000)

• bottleneck1: inflow = 1900 veh/hour, 10% CAV penetration. The human drivers follow
the standard lane changing model in the simulator. (S ∈ R141,A ∈ R20, T = 1000)

3.2 Training

We use the RLlib [12] benchmark for the Proximal Policy Optimization (PPO) with Generalized
Advantage Estimation (GAE) [13] algorithm for training the RL agents. We use the default hy-
perparameters as used in [9] for all of our experiments. We were unable to spend more time on
hyperparameter tuning due to time constraints (run takes an enormous amount of time) and compute
power limitations. We train all of our agents for 50 iterations each with 8 rollouts per training iteration
and 1500 simulation steps per rollout.

3.3 Fairness

Previous work focused of learning RL policies in the bottleneck environment without any fairness
considerations. As seen in Figure 2(a), this results in the controller learning a policy which blocks
some lanes and reserves a high throughput to maximize the average throughput through the bottleneck
[9]. To avoid learning similar behavior, we define fairness as all vehicles spending similar amounts of

2



(a) Without Fairness

(b) With Fairness

Figure 2: Behavior learnt when training: (a) without regard for fairness: autonomous vehicles (red)
learn to block the upper lanes in order to reserve the lower lane as a high-throughput lane; (b) with
regard for fairness: all lanes are travel at roughly the same speeds.

time in the bottleneck - e.g. all vehicles traveling through the bottleneck at approximately the same
speed, no matter which lane they are in.

We add fairness considerations to training through reward shaping. More specifically, we add a
fairness penalty to the rewards as follows:

µe3
=

1

4

3∑
i=0

viavg,e3
; µe4

=
1

2

1∑
i=0

viavg,e4

σe3 =

√∑
(viavg,e3

− µe3
)2

4
σe4 =

√∑
(viavg,e4

− µe4
)2

2

rf = αe3
· σe3

+ αe4
· σe4

Rf
t = rt + rf

Here, µe3
and µe4

represent the average velocities across lanes in the segments where four lanes
merge into two lanes (edge 3 in the simulator) and where two lanes merge into one lane (edge 4 in
the simulator), respectively. We then evaluate the standard deviations of average velocities across the
lanes in edge 3 (σe3) and edge 4 (σe4). These standard deviations are scaled to a similar magnitude
as the original reward rt by setting αe3

= αe4
= −0.1. We get the total reward Rf

t as the sum of the
original reward and the fairness penalty terms.

We also experimented with adding a fairness penalty on only edge 4 (rf = αe4 ·σf
e4

) as an alternative
to the reward rf described above.

3.4 Human driving behavior variation

As previous work assumes all humans follow the same driving model, we wanted to test the perfor-
mance robustness of the learnt RL policy by exposing the model to different models of human driving
behavior during training and test times. We assume there are "types" of human drivers that are drawn
from some distribution, and autonomous agents can take actions to infer the parameters of the humans
around them to then employ the optimal control policy that responds to that model. For example,
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Parameter Sampling Distribution
Max acceleration (m/s2) N (2.7, 0.1)
Minimum desired following headway (s) min(max(0.5,N (1, 1)), 4)
Speed gain min (max (0,N (1, 1)) , 2)
Speed gain lookahead (s) max(5, Poisson(1))
Pushiness 0.3
Impatience min (max (−0.5,N (1, 0.16)) , 0.5)
Cooperativeness U(0, 1)

Table 1: Distributions used to sample human driver parameters.

humans may have different car-following behavior (different acceleration, different desired following
distance) in a high-traffic setting, and autonomous agents may be able to minimize the stopping and
starting of different human drivers behind them if they can successfully learn models of different
human driving behaviors. Justification for the chosen sampling distributions came from SUMO [8]’s
documentation on vehicle types, lane-changing models, and car-following models, which in turn was
based on the literature on human traffic modeling.

We randomly created 5 different types of human drivers to add to the bottleneck environments. Since
the bottleneck0 environment doesn’t allow the human drivers to change lanes, we only altered the
car-following behavior: each human driver type had a maximum acceleration (m/s2) and minimum
desired following headway (a reaction time, measured in seconds) sampled from the parameters in
(Table 1). We set the minimum possible value for headway as 0.5s as it is the simulation step size.

For bottleneck1, we sampled values for all the parameters listed in (Table 1) for each human driver
type. The speed gain, pushiness, impatience, and cooperativeness parameters are unit-less values
used by SUMO to characterize different lane changing behaviors, whe re higher values indicate
more dramatic behaviors. Speed gain represents a driver’s eagerness to change lanes to gain speed.
Speed gain lookahead controls a driver’s lookahead time for anticipating slowdowns. Pushiness
indicates a driver’s willigness to encroach laterally on other drivers, and is multiplied by impatience.
Cooperativeness represents willingness to cooperatively change lanes.

3.5 Evaluation

We adopt the same evaluation procedure as [9], and measure outflow (vehicles per hour) and through-
put efficiency (defined as outflow

inflow ) over the last 500 seconds of a 1000 second rollout, averaging
results over 40 rollouts. As a baseline, we estimate human-level performance by running simulations
of the traffic environment with no learning agents with the same default human driver model used in
the fairness experiments.

4 Experiment Results

4.1 Fairness experiment results

In both bottleneck0 (Table 2) and bottleneck1 (Table 3), adding the fairness penalty to the
reward reduces the standard deviation of average velocities across the lanes, ensuring vehicles travel
through the bottleneck in approximately the same time. Notably, there is only a slight reduction in the
throughput efficiency when the fairness penalty terms are added relative to the No Fairness baseline
and performs better than the No AV baseline across all metrics.

4.2 Human driver variation experiment results

In both bottleneck0 (Table 4) and bottleneck1 (Table 5), adding a variety of human drivers to
the environment during training and evaluation had little significant impact when compared to RL
policies learned with less human driver variation during training and evaluation. These results held
both with and without considering fairness.
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Metric No AVs No Fairness Fairness Edge 4 Fairness Edge 3+4
σ∗e3

2.9357 ± 1.0053 6.0091 ± 1.9731 0.0644 ± 0.0534 0.0650 ± 0.0866
σ∗e4

0.0703 ± 0.0844 5.1810 ± 2.2494 0.0318 ± 0.0285 0.2625 ± 0.5773
Outflow†
(veh/hr) 1402.0 ± 22.249 1589.9 ± 68.7569 1489.5 ± 9.4135 1514.7 ± 30.6185

Throughput
efficiency†
(veh/hr)

0.5608 ± 0.0089 0.6345 ± 0.0274 0.5944 ± 0.0037 0.6045 ± 0.0122

Table 2: Results from experimenting with fairness penalties in the bottleneck 0 environment. σe3
and

σe4
are the standard deviations of average velocities across the lanes in edge 3 and 4 of the bottleneck,

respectively. ((.)∗- lower the better; (.)†- higher the better)

Metric No AVs No Fairness Fairness Edge 4 Fairness Edge 3+4
σ∗e3

1.6114 ± 0.1683 1.0757 ± 0.5137 0.1491 ± 0.0848 0.2565 ± 0.1455
σ∗e4

0.3630 ± 0.0738 7.9292 ± 1.5106 0.2092 ± 0.2180 0.1217 ± 0.0786
Outflow†
(veh/hr) 1427.3 ± 20.935 1733.0 ± 71.2798 1495.9 ± 26.3179 1499.7 ± 29.9638

Throughput
efficiency†
(veh/hr)

0.5709 ± 0.0084 0.6915 ± 0.0285 0.5969 ± 0.0110 0.5984 ± 0.0121

Table 3: Results from experimenting with fairness penalties in the bottleneck 1 environment. σe3 and
σe4 are the standard deviations of average velocities across the lanes in edge 3 and 4 of the bottleneck,
respectively. ((.)∗- lower the better; (.)†- higher the better)

5 Discussion

As a caveat, we note that all of our results are only preliminary and should be validated (as described
in Section 5.1.1) drawing conclusive implications.

Our preliminary results for the fairness experiments indicate that fairness should be non-trivially
taken into account when training AVs, as it can lead to significantly different learned behaviors that
can drastically impact the ease of integrating AVs among human drivers.

Our preliminary results for the human driver model experiments indicate no significant change
between training and testing with less human driver models and training and testing with more human
driver models. This result may require more examination because we only added five new human
driver models due to some errors in SUMO and FLOW, and due to time constraints did not separately
characterize the impact of changing individual human driver model parameters.

5.1 Future work

5.1.1 Validating results

Due to time constraints and the computationally-intensive, time-consuming nature of training the
RL agents for each experiment (∼4 hours for 50 iterations of training), we did not train our agents
using multiple random seeds and dramatically limited the number of training iterations. We also did
not perform a hyperparameter search for training the PPO controller, instead using the default values
listed in the Flow tutorials for hyperparameters (and verifying that they matched previously-published
values). As can be seen in Figure 3, many training curves did not increase by very much over the
course of training. The procedural changes outlined in this section can confirm or improve those
results.

To validate and increase the robustness of our results, we would like to properly train each agent by
performing a hyperparameter search, training with multiple random seeds for a statistical significance
of the results, and training for more iterations for each experiment. We did try running experiments
for 100 training iterations for bottleneck0 but saw some strange behavior and did not have time to
do the same for bottleneck1, and thus left those results out of this report. Thus, we emphasize the
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Metric RL Benchmark With More
Human Models

With Fairness
Edges 3+4

With More
Human Models +
Fairness Edges 3+4

σ∗e3
6.0091 ± 1.9731 7.7162 ± 3.3361 0.0650 ± 0.0866 0.2632 ± 0.1758

σ∗e4
5.1810 ± 2.2494 7.8297 ± 2.6012 0.2625 ± 0.5773 0.1548 ± 0.2224

Outflow†
(veh/hr) 1589.9 ± 68.7569 1587.4 ± 88.6358 1514.7 ± 30.6185 1416.0 ± 17.2189

Throughput
efficiency†
(veh/hr)

0.6345 ± 0.0274 0.6353 ± 0.0354 0.6045 ± 0.0122 0.5667 ± 0.0068

Table 4: Results from experimenting with more human driver types in the bottleneck0 environment.
σe3 and σe4 are the standard deviations of average velocities across the lanes in edge 3 and 4 of the
bottleneck, respectively. ((.)∗- lower the better; (.)†- higher the better)

Metric RL Benchmark With More
Human Models

With Fairness
Edges 3+4

With More
Human Models +
Fairness Edges 3+4

σ∗e3
1.0757 ± 0.5137 2.2340 ± 1.2048 0.2565 ± 0.1455 0.2077 ± 0.1928

σ∗e4
7.9292 ± 1.5106 7.0668 ± 1.2711 0.1217 ± 0.0786 0.0884 ± 0.0569

Outflow†
(veh/hr) 1733.0 ± 71.2798 1608.5 ± 91.8871 1499.7 ± 29.9638 1463.0 ± 11.7428

Throughput
efficiency†
(veh/hr)

0.6915 ± 0.0285 0.6434 ± 0.0373 0.5984 ± 0.0121 0.5855 ± 0.0047

Table 5: Results from experimenting with more human driver types in the bottleneck1 environment.
σe3 and σe4 are the standard deviations of average velocities across the lanes in edge 3 and 4 of the
bottleneck, respectively. ((.)∗- lower the better; (.)†- higher the better)

need to do more hyperparameter tuning, to run experiments for more training iterations, and to try
other RL algorithms such as TRPO.

5.1.2 Fairness

After validating results for the single-agent case, it could be interesting to explore how fairness
considerations extend to the multi-agent setting, where it may be harder for agents to learn the
coordinated lane-blocking behavior they exhibit when trained without fairness penalties. In particular,
it may also be interesting to experiment with fairness penalties in the multi-agent setting where each
agent is incentivized to travel through the bottleneck as quickly as possible and does not know the
global throughput through the bottleneck.

In the bottleneck environment specifically, it could be interesting to explore fairness penalties that
apply generally (e.g. penalize standard deviation of velocities among all lanes, not limited to certain
segments of the bottleneck). The impact of transferring these penalties to other non-bottleneck
environments can be another future area of research.

5.1.3 Human driver models

It would be interesting to test how our results change as a function of the number of human driver
models added to the environment. Separately, it could be very informative to characterize the impact
of specific parameter changes in the human driver model by running independent experiments for
each parameter change. If a particular parameter is shown to be more influential, for example, that
parameter could inform both future AV training and human driver education.

Finally, in this project we compared the results of previously-published training approaches (models
trained and evaluated with only one human driver model) to the results of our experiments. But, it
could be interesting to also approximate sim-to-real transfer capabilities by testing models trained
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(a) Fairness experiments (b) Human driver experiments

Figure 3: Mean episode rewards for experiments normalized by their initial values.

with one human driver model on environments containing many human driver models (approximating
the real world).
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