
NICE: Robust Scheduling through Reinforcement Learning-Guided Integer
Programming

Luke Kenworthy1, Siddharth Nayak2, Christopher Chin2, Hamsa Balakrishnan2

1 MIT-Air Force AI Accelerator
2 MIT

{lukek, sidnayak, chychin, hamsa}@mit.edu

Abstract
Integer programs provide a powerful abstraction for repre-
senting a wide range of real-world scheduling problems. De-
spite their ability to model general scheduling problems, solv-
ing large-scale integer programs (IP) remains a computational
challenge in practice. The incorporation of more complex
objectives such as robustness to disruptions further exacer-
bates the computational challenge. We present NICE (Neu-
ral network IP Coefficient Extraction), a novel technique that
combines reinforcement learning and integer programming to
tackle the problem of robust scheduling. More specifically,
NICE uses reinforcement learning to approximately represent
complex objectives in an integer programming formulation.
We use NICE to determine assignments of pilots to a flight
crew schedule so as to reduce the impact of disruptions. We
compare NICE with (1) a baseline integer programming for-
mulation that produces a feasible crew schedule, and (2) a
robust integer programming formulation that explicitly tries
to minimize the impact of disruptions. Our experiments show
that, across a variety of scenarios, NICE produces schedules
resulting in 33% to 48% fewer disruptions than the baseline
formulation. Moreover, in more severely constrained schedul-
ing scenarios in which the robust integer program fails to pro-
duce a schedule within 90 minutes, NICE is able to build ro-
bust schedules in less than 2 seconds on average.

Introduction
Scheduling is a ubiquitous type of optimization problem that
is often solved using integer programs (IPs) or mixed-integer
programs (MIPs). While IPs and MIPs can model a wide
range of scheduling problems, solving large-scale instances
in practice can be computational challenging.

In most practical applications, it is also important that the
schedules are robust to uncertainties. Robust scheduling in-
volves the building of schedules that will undergo minimal
change when faced with unknown future disruptions. While
MIP formulations of scheduling problems can be extended
to account for robustness, the resulting problems are often
much more computationally challenging than their baseline,
non-robust counterparts. Even with state-of-the-art solvers,
such extensions to accommodate robustness can add hours
to the time needed to compute an optimal schedule, some-
times making them impractical for real-world use.
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We propose a technique, Neural network IP Coeffi-
cient Extraction (NICE), that seeks to find a quick-but-
approximate solution to a scheduling problem with an addi-
tional robustness objective, by using reinforcement learning
(RL) to guide the IP formulation. We first determine a feasi-
ble schedule using a baseline IP. We simultaneously train an
RL model to build a schedule for the same problem, using
a reward function that leads to more robust schedules (but
that would have added considerable computational burden
if encoded directly in the IP formulation). Then, rather than
use the RL model to create a schedule directly, we use the
probabilities in its output layer to assign coefficient weights
to the decision variables in our simpler IP to create a feasi-
ble schedule. By doing so, we leverage the intuition behind
knowledge distillation (Hinton, Vinyals, and Dean 2015)
that the distribution of values in the output layer of a neural
network contains valuable information about the problem.

NICE allows us to approximate the robust scheduling for-
mulation with significantly fewer variables and constraints.
Across a variety of disruption scenarios, we find that NICE
creates schedules with 33–48% fewer changes than the base-
line. Moreover, in certain practical problem instances, NICE
finds a solution in a matter of seconds; the corresponding
IP that explicitly optimizes for robustness fails to produce a
solution within 90 minutes for the same scenarios.

The main contribution of this paper is the introduction
of a new technique to approximate complicated IP formula-
tions using RL. To the best of our knowledge, NICE1 is the
first method to use information extracted from neural net-
works in IP construction. We illustrate the performance of
NICE in creating robust (disruption-resistant) crew sched-
ules (i.e., assignments of pilots to flights). However, robust
crew scheduling is only one application of NICE; we believe
that the method is potentially applicable to a wider range of
discrete optimization problems.

Background and Related Work
Personnel scheduling has been a long-standing challenge in
Operations Research, and has been the focus of much re-
search over the past several decades (Dantzig 1954; Van den
Bergh et al. 2013). Integer programs (IPs) and mixed inte-

1Our code is available at https://github.com/nsidn98/NICE
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ger programs (MIPs)2 have been widely-used for personnel
scheduling, in large part due to their ability to represent gen-
eral scheduling problems. However, despite the power of
IPs to model scheduling problems, solving large-scale IPs
in practice is often computationally challenging (Papadim-
itriou and Steiglitz 1998). Most real-world applications also
need robust schedules, namely, schedules that do not require
considerable adjustments to personnel assignments in the
event of an unforeseen disruption. While robust MIP-based
formulations of scheduling problems can be developed, they
are usually at least as computationally challenging as their
non-robust counterparts (van Hulst, Den Hertog, and Nuijten
2017; Vujanic, Goulart, and Morari 2016; Craparo, Karatas,
and Singham 2017; Bertsimas and Sim 2003).

The scheduling of flight crews (e.g., pilots) is a person-
nel scheduling problem that arises in the context of aviation
(Honour 1975; Caprara et al. 1998; Jacobs 2014; Zhang,
Zhou, and Wang 2020). Similar to other scheduling prob-
lems, crew scheduling has traditionally been tackled using
large-scale IPs, both for airline and military flight crews
(Kohl and Karisch 2004; Slye 2018) Flight delays are the
main cause of disruption to crew schedules in commercial
aviation; buffers (or slack in the schedule) have therefore
been considered as a mechanism to achieve schedule stabil-
ity amidst flight delays (Wu 2005; Brueckner, Czerny, and
Gaggero 2021). A buffer refers to the amount of time be-
tween the successive flights flown by a particular pilot. By
increasing these buffers, a new pilot assignment is less likely
to be needed due the initially-planned pilot being delayed,
and therefore being unable to make the flight.

Learning-Based Approaches to Scheduling Successes
in deep (reinforcement) learning have motivated research
that focuses on obtaining end-to-end solutions to combi-
natorial optimization problems; e.g., the travelling sales-
man problem (Nazari et al. 2018; Lu, Zhang, and Yang
2020; Zhang, Prokhorchuk, and Dauwels 2020; Wu et al.
2019; Kool, van Hoof, and Welling 2019) or the satisfia-
bility problem (SAT) (Amizadeh, Matusevych, and Weimer
2019; Yolcu and Poczos 2019). RL has also been used for
resource management and scheduling in a diverse set of
real-world applications. For example, Gomes (2017) uses
an asynchronous variation of the actor-critic method (A3C)
(Mnih et al. 2016) to minimize the waiting times of patients
at healthcare clinics. The lack of readily available optimiza-
tion methods for this problem due to the ad-hoc nature of
patient appointment scheduling motivates the usage of RL
for this application to model the uncertainty. Mao et al.
(2016) introduce DeepRM which uses resource occupancy
status in the form of images as the states and uses neu-
ral networks for training the RL agent. Chen et al. (2017)
improve upon DeepRM by modifying the state-space, re-
ward structure and the network used in the DeepRM pa-
per. Chinchali et al. (2018) use RL for cellular network traf-
fic scheduling. They incorporate a history of the states ob-

2We use the terms integer program (IP) and integer linear pro-
gram (ILP) interchangeably unless noted otherwise; similarly for
mixed-integer program (MIP) and mixed-integer linear program
(MILP).

served to re-cast the problem as a Markov Decision Pro-
cess (MDP) (Puterman 1994) from a non-Markovian setting.
Along with this modification, they construct a reward func-
tion that can be modified according to user preferences. In
all of the works above, the models used application-specific
state space, action space, and reward structures to optimize
special-purpose objective functions to create schedules.

In recent work, Nair et al. (2021) use a bipartite graph
representation of a MIP and leverage graph neural networks
(Scarselli et al. 2009; Kipf and Welling 2017) to train a gen-
erative model over assignments of the MIP’s integer vari-
ables. We do not use generative models to solve an IP for-
mulation, but instead use RL to formulate the IP itself. Very
recent work by Ichnowski et al. (2021) uses RL to speed up
the convergence rates in quadratic optimization problems by
tuning the inner parameters of the solver.

Knowledge Distillation Hinton et al. (2015) explored the
use of internal neural network values to distill the knowledge
learned by a model. They reasoned that the probabilities in a
neural network’s output layer carry useful information, even
if only the maximum probability value is used for ultimate
classification: “An image of a BMW, for example, may only
have a very small chance of being mistaken for a garbage
truck, but that mistake is still many times more probable than
mistaking it for a carrot.” In this work, they used the values
from the input to the output layer of a larger neural network,
as well as the training data itself, to train a smaller neural
network. This smaller neural network achieved fewer classi-
fication errors than a network of the same size trained only
on the training data. Using a similar approach, they trained
a neural network on speech recognition data with the same
architecture as a neural network trained on the data directly.
They found that the new, distilled model performed better
than the original one; it also matched 80% of the accuracy
gains attained by averaging an ensemble of 10 neural net-
works with the same architecture, each initialized with dif-
ferent random weights at the beginning of training. Simi-
larly, our approach uses the probabilities output by a neural
network to extract objective function coefficient weights.

Approach
Crew Scheduling Problem
In this paper, we seek to build robust schedules for a version
of the flight crew scheduling problem, hereafter referred to
as the “crew scheduling problem”, which has a long history
in both commercial and military aviation (Arabeyre et al.
1969; Gopalakrishnan and Johnson 2005; Combs and Moore
2004). We consider the scenario in which we are given a col-
lection of flights that must be flown by a given squadron (i.e.,
a group) of pilots. Every flight has multiple slots, each of
which must be filled by a different pilot. Each slot has quali-
fication requirements that must be satisfied by any pilot who
is assigned to that slot. Depending on their qualification, a
pilot would only be eligible to fill a subset of slots. Finally,
every pilot has some specified availability. We discretize our
schedule into days, although other time discretizations could
be used. In other words, a feasible schedule assigns pilots to
slots such that every flight in the schedule horizon is fully



covered, and the qualification requirements for the slots and
availability restrictions of the pilots are satisfied.

We worked with a flying squadron to develop our prob-
lem formulation, focusing on their constraints and prefer-
ences. Consequently, our formulation differs from some of
the crew scheduling formulations in prior literature, which
have been largely in the context of airline flight crews. For
example, all of the squadron’s flights start and end at the
same place, so we do not factor in crew relocation. Also, in
the data we received, the start and end dates of the flights
included the required crew rest time, so we did not need to
explicitly model this. However, flying squadrons have more
granular pilot qualification levels than have been considered
in airline crew scheduling.

Baseline Integer Program Formulation
Chin (2021) and Koch (2021) created a baseline IP for the
crew scheduling problem, producing a satisfactory assign-
ment with respect to all relevant constraints. We use a similar
construction for our baseline IP, with the primary difference
of using a decision variable for the assignment of each pilot
to each slot, rather than one for each pilot to each flight. We
define the following sets and subsets:

i ∈ I The set of pilots
f ∈ F The set of flights
s ∈ S The set of all slots

Uf ⊂ F Flights that conflict with flight f
Li ⊂ F Flights that conflict with pilot i’s leave
Sf ⊂ S The set of slots belonging to flight f
Qi ⊂ S Slots that pilot i qualifies for

We use the binary decision variable Xis, which is 1 if
pilot i ∈ I is assigned to slot s ∈ S, and 0 otherwise. We
now have the following equation:

max
∑
i∈I

∑
s∈S

Xis (1.1)

such that:

Xis = 0 ∀i ∈ I, f ∈ Li, s ∈ Sf (1.2)
Xis = 0 ∀i ∈ I, s ∈ S \Qi (1.3)∑

s∈Sf

Xis ≤ 1 ∀i ∈ I, f ∈ F (1.4)

∑
i∈I

Xis = 1 ∀s ∈ S (1.5)

∑
s∈Sf

Xis +
∑

s′∈Sf′

Xis′ ≤ 1 ∀i ∈ I, f ∈ F, f ′ ∈ Uf (1.6)

Xis ∈ {0, 1} ∀i ∈ I, s ∈ S (1.7)

Constraints (1.2) and (1.3) ensure that pilots are only as-
signed to slots that they are qualified for, and that pilots will
never be assigned to flights that conflict with their leave.
Constraint (1.4) prevents the scheduling of pilots to mul-
tiple slots on the same flight. Constraint (1.5) ensures that
every slot gets filled by exactly one pilot. Constraint (1.6)
prevents assignment of pilots to conflicting flights. We make
our pilot-slot decision variable binary with Constraint (1.7).

Finally, Equation (1.1) ensures that we fill as many slots as
possible. Due to our requirement that each slot have exactly
one pilot associated with it, this equation always produces
the same objective value.

Buffer Formulation
Chin (2021) utilizes additional constraints and decision vari-
ables to optimize schedules for robustness by increasing the
amount of buffer time between flights. For our purposes, we
consider the buffer time between two flights to be the num-
ber of full days between their start and end time. For exam-
ple, suppose pilot X is assigned to flights A and B; flight A
ends on day 1, and flight B starts on day 5. We say that there
is a buffer time of 3 days for pilot X.

To incorporate buffers into an IP, Chin (2021) identifies all
flight pairings that would create a buffer less than or equal to
some maximum threshold, Tbuffer, used to dampen the com-
plexity of realistic problem instances. Then, {0, 1} decision
variables Biff ′ for all pilots i ∈ I and flights f, f ′ ∈ F ×F
are created. Constraints are used to ensure that Biff ′ is 1 if
and only if the following conditions are met:

1. f ̸= f ′

2. Pilot i qualifies for at least one slot in both f and f ′.
3. f and f ′ have a buffer between 0 and Tbuffer, inclusive.
4. Pilot i is assigned to consecutive flights f and f ′.

Chin (2021) then defines a buffer penalty biff ′ ∈ [−1, 0)
that gets more negative for lower buffers: down to -1 when
the buffer between f and f ′ is 0, and closest to 0 when the
buffer is Tbuffer. Note that buffers longer than Tbuffer effec-
tively have a penalty of 0. Finally, he incorporates all of this
into the following objective function to optimize buffer time:

max
∑
i∈I

∑
f,f ′∈F×F

biff ′Biff ′ (2)

In our buffer IP, we incorporate this formulation with the
assistance of additional auxiliary {0,1} decision variables
for each pilot-flight combination, setting it to 1 if a pilot is
assigned to any slot on a given flight, and 0 otherwise. In our
experiments, we found that, in certain problem instances, the
buffer IP was highly effective in producing robust schedules.

Reinforcement Learning Formulation
We model the building of a valid schedule with a discrete
event simulation (DES): at each time step, we take an ac-
tion, which affects the state of our system. The main idea of
our reinforcement learning scheduling approach is to order
the slots that need to be scheduled and, at each slot, pick a
pilot to assign to that slot. This technique, previously used
by Washneck et al. (2018) for production scheduling, gives
us an action space size equal to the number of pilots. If we
get through all of the slots, we end up with a complete sched-
ule, though filling all of the slots is not a guarantee; the RL
scheduling agent could back itself into a corner, leaving no
pilots to assign to a given slot based on its previous deci-
sions. We use Proximal Policy Optimization (PPO) (Schul-
man et al. 2017) which is an actor-critic method where the
actor chooses the action for the agent and the critic estimates



the value function. The actor network gives a probability dis-
tribution over the pilots to choose given the state input and
the action is chosen by sampling from this distribution.

NICE
Motivation In our early exploration of building schedules
with non-robustness objectives, the RL-produced schedules
would often approach the effectiveness of the IP schedules
with respect to the optimized metrics, but they would never
do better. This observation gave us two key insights.

First, the RL model assigns pilots to slots sequentially, op-
erating in a “greedy” fashion. Once an assignment is made,
it cannot be changed. Thus, the RL agent lacks a global view
of the full schedule in its state space, meaning it has imper-
fect information at the time of each pilot assignment. In con-
trast, the IP scheduling approach, which optimizes an objec-
tive function across all pilot assignments, can factor in trade-
offs created by the complex interplay of related constraints.

Second, it was clear that our RL scheduling agent was
capable of learning. While it could not match the perfor-
mance of the IP schedules in our preliminary exploration, it
still produced schedules with considerably better objective
performance than the baseline. When scheduling objectives
can easily be captured in an IP, this observation is not par-
ticularly helpful. However, for more complicated optimiza-
tions that integer programming struggles with, this insight
proves useful: to avoid the greedy pitfalls of RL for schedul-
ing while still leveraging the knowledge learned by our neu-
ral network, we can use the probabilities produced by the
output layer in our IP scheduling formulation.

These two observations motivated the creation of NICE.
NICE uses RL to approximate sophisticated integer pro-
grams with a simpler formulation. We apply this technique
to the crew scheduling problem.

NICE IP Formulation As an IP, NICE closely resembles
the baseline formulation. The only difference is in the coef-
ficients for the objective function. Recall that our decision
variable, Xis, is 1 if pilot i is assigned to slot s and 0 oth-
erwise. This variable aligns neatly with our RL scheduling
formulation, which considers slots in a fixed order. At each
slot, it produces a probability for each pilot that captures
how likely assigning that pilot to that slot is to maximize re-
ward in a given scheduling episode. It then assigns the pilot
with the maximum probability to that slot. We can use ais
to refer to the probabilities output by the network for the as-
signment of pilot i to slot s. Now, to leverage the knowledge
learned by the RL scheduling approach in our IP formula-
tion, we can incorporate ais into our objective function:

max
∑
i∈I

∑
s∈S

aisXis (3)

With this new equation, our IP scheduling approach is in-
centivized to pick the pilot with the highest probability pos-
sible at each slot, subject to constraints and possible rewards
for other slots. This new formulation approximately captures
the reward function used by the RL agent while giving it a
global view of pilot assignment.

Extracting Probability Weights An important issue we
had to address was the extraction of ais from our RL neural
network. The actions taken at each state of the RL schedul-
ing process can impact the pilot probability vector at later
states. Thus, the order that the RL scheduler fills the slots
has a potentially confounding impact on the ais weights. Ex-
tracting the probability vector at each slot while running the
RL scheduling process as normal could cause the specific
actions taken to bias our ais values, diminishing the advan-
tage of the IP scheduler’s global outlook.

In our experiments, we used two different approaches. In
the first one, we took a Monte Carlo approach, trying to ap-
proximate the average weight across all possible orders of
scheduling the slots. In this approach, we randomly shuffled
the order of slots that the RL scheduler had to assign and
then recorded the ais weights at each step of the scheduling
process. We ran this process n times to get n total ais values
for each pilot-slot pair. If the RL agent could not fill a slot
in that round of scheduling, we set the ais value to 0. We
then averaged the n values for each pilot-slot pair to get our
final ais values. Note that this method causes the scheduling
process to take longer for higher values of n because it has
to run more RL scheduling rounds.

The next approach, which we call the “blank slate” ap-
proach, exploits the fact that the probability weights for the
pilots produced by the first slot do not depend on any pre-
vious actions taken. Thus, we can make each slot our first
scheduled slot to get weights that do not depend on previous
decisions. To do so, for each slot s in our fixed order, we
initialized a new RL agent with the same underlying neural
network, cutting out all of the states that occur before s then
extracting the ais values for the pilots on that slot.

Figure 1 demonstrates using the Monte Carlo approach to
extract weights from the neural network, then feeding those
weights into the IP scheduler. To summarize, to build our
NICE schedule:

1. We train a neural network on the DES version of the crew
scheduling problem.

2. We use either the Monte Carlo or “blank slate” approach
to extract probabilities from the output layer of the neural
network for the assignment of each pilot to each slot.

3. For each pilot-slot combination, we use the extracted
probability as the coefficient (ais) for its respective pilot-
slot decision variable (Xis)

4. Using this objective function and its constraints, we solve
the IP to obtain our scheduling solution.

We note that while we apply NICE specifically to the crew
scheduling problem in this paper, NICE is highly generaliz-
able as it can be used to obtain a solution to any IP that can
also be modeled as a DES.

Incorporating Robustness To use NICE to build robust
schedules, we train an RL scheduler to optimize buffer time
in its assignments. To do so, we include a reward of b + 1
whenever the RL agent places a pilot on an event that forms
a buffer of length b with the pilot’s most recent event. We add
+1 term to reward the agent for making a placement, regard-
less of buffer. We give the agent a reward of T − 1 when it



Figure 1: Once we train our network, in the Monte Carlo ap-
proach, we run the scheduler n times, shuffling the order of
slots each time. We then average the probability values in the
output layer across the n runs over pilots and slots to obtain
our NICE coefficients. Finally, we pass these coefficients to
the IP solver to obtain our NICE-generated schedule.

places a pilot with no previous events scheduled. We chose
T − 1 because this is the maximum reward for the T -day
schedules that the RL agent trains on. For example, imagine
pilot X is assigned to a 0-day flight starting and ending on
day 1. If the pilot were assigned to a flight starting on day 7,
that assignment would earn a reward of 6, because there are
5 days between day 1 and day 7, exclusive. We do not use
a maximum buffer value like Tbuffer in the IP formulation
because larger Tbuffer values do not noticeably affect the run
time of our program like it does with the IP. We included two
exceptions to this reward policy. First, to incentivize build-
ing full schedules, the agent earns a reward of 25 when all
slots in an episode are scheduled. Second, to deter the cre-
ation of incomplete schedules, we give the agent a reward of
−10 when it is unable to schedule all events in an episode.

In short, we give local rewards to our RL agent to help it
build complete, robust schedules using buffers as a heuristic;
our hope is that this training method will ultimately produce
probability weights that, when extracted, lead our IP solver
to build robust schedules.

Experiments
RL Training
To train our RL agent, we created an OpenAI Gym (Brock-
man et al. 2016) type environment for the crew scheduling
problem. We utilized an anonymized dataset from a flying
squadron to construct a random event generator. The dataset

contained 87 pilots with 32 different qualifications and 801
flights across over six months, each containing between 2–3
slots. There were 16 different types of flights, where the type
determined the qualification requirements for the slots on
the flight. These flights were subdivided into two categories:
missions and simulators, which we treat equivalently except
for the purposes of our random event generation. There were
7 mission types and 9 simulator types. We trained our RL
agent on randomly generated flights based on this dataset.

Random Event Generation To generate the random
flights, we first divided our dataset into simulators and mis-
sions that started in 26 different full-week intervals. For each
week, we created α random mission-based flights, where α
is drawn from a normal distribution with a mean and stan-
dard deviation equal to the mean and standard deviation of
missions across all 26 weeks. Similarly, we also create β
random simulator-based flights, where β is drawn from a
similar distribution that uses simulators instead of missions.
The dataset also contained a variety of training requirements
that each pilot, ideally, would fulfill; the number of times the
pilot should fulfill each requirement; and information about
which flight satisfied which training requirements. Along
with the training requirement information, each flight con-
tained two binary training requirement qualifiers (TRQs) to
help determine which training requirements the flight ful-
filled. Note that we did not use the training requirement
information outside of the state space formulation for our
RL scheduler. In our experiments, we found that including
the training requirements from our dataset in the state space
helped our NICE scheduler perform better. We suspect that
they helped our neural network better reason about trade-
offs when selecting a particular pilot for a slot.

For each flight generated, we picked a random day in the
scheduling week for it to start. We then randomly pick a type
for the flight, where the probability of picking that type of
mission was proportional to the number of times it showed
up in the dataset. To determine the length of duration for the
flight, we randomly sample a flight length from a flight of
the selected type from the dataset. We followed an identical
process to generate each simulator, except each simulator
started and ended on the same day, so we did not randomly
pick a length. The dataset provides the dates each pilot is
on leave, which we used directly. Then we created a fixed
ordering of slots that need to be scheduled. We order the
slots first by the corresponding flight’s start date and use the
flight’s arbitrary unique ID as a tie-breaker. We order slots of
the same flight by ascending qualification. The assignment
of a pilot to a slot serves as a time-step in our DES.

Configuration The state space for the RL agent includes:
1. A binary vector for the pilots available for the current slot
2. A flattened vector encoding the current event to be sched-

uled, consisting of:
(a) A one-hot encoding of the event type
(b) A binary vector indicating whether each TRQ was true

or false
(c) A binary vector representing the pilots assigned to the

current event. (Each event may have 2-3 pilot slots)



(d) The event duration (in days)
(e) The number of days between the start of the schedul-

ing episode and the start of the event
(f) The number of days between the start of the schedul-

ing episode and the end of the event
3. A vector containing the total number of training require-

ment fulfillments each pilot could receive for flying that
event, if it were flown a sufficient number of times

To build the neural network for our NICE scheduler, we
trained a variety of models with different hyperparameter
combinations. One of the hyperparameters of particular in-
terest was the training schedule density, d. Recall that we
scheduled α flights and β simulators in a round of schedul-
ing. During training, we multiplied α and β by d so the agent
would schedule more flights in the same time period. We
trained RL models with d ∈ {1, 2, 3}. We trained a model
with 5 different seeds for each value of d, ultimately cre-
ating 3 × 5 = 15 different neural networks for testing. The
hyperparameters for all our experiments are listed in the Ap-
pendix. We note that, because the output layer is equal to the
size of the number of pilots, adding a pilot would require us
to re-train the network with the new shape.

Scheduling Parameter Selection
For further experimentation, we had to pick the best combi-
nation of RL model and weight extraction method to use. We
parameterize our weight extraction methods with the vari-
able n, where n = 0 represents the “blank slate” extraction
method mentioned previously, and n > 0 represents the n
value used in the Monte Carlo approach.

To select the best combination, we built an environment
where, using the same flight generation process to train the
RL scheduler, we generate 1 week’s worth of flights. From
these flights and associated slots, we generate pilot-slot pair-
ings using the baseline integer program and the NICE sched-
ule with weights extracted from the selected RL network and
the given n value. Next, one day into the schedule, we de-
layed 50% of the flights that had not already left. We pushed
back each flight by a number of days randomly chosen uni-
formly between 1 and 3, figuring that delays longer than
3 days were relatively rare. To fix this disruption in both
of these schedules, we used an integer program that mini-
mized the number of changes to the pilot-slot pairings. From
this disruption resolver, we end up with the number of dis-
ruptions that occurred under each schedule. Sometimes, we
would randomly generate a series of flights that made it im-
possible for the IP or NICE approach to schedule because a
pilot-slot pairing did not exist that met all of the constraints.
In these cases, we skipped to the next series of randomly-
generated flights, not recording any disruption data because
there was no schedule to disrupt. Then, for each neural net-
work and for each n value n ∈ {0, 2, 4, 8} (60 experiments
total), we ran this scenario 20 times, comparing the average
number of schedule disruptions between the baseline IP and
the NICE scheduler across those 20 runs.

We calculated the ratio of disruptions, r, between the two
methods, where r < 1 indicates that the NICE method pro-
vided a schedule with fewer disruptions on average than the

IP baseline. We then determined the median r value over
seed values for each training density and weight extraction
method combination. We used the lowest median r value to
determine our final scheduling method and underlying neu-
ral network for NICE. As a result of this process, we ob-
tained a network trained with a density of 1 and an n value of
2. In this case, across seed values, three networks produced
the same median value for this combination, so we arbitrar-
ily chose a network from those three models. The median r
value was 0.25, with a range of 0.08 (0.25 to 0.33). We used
this network and n value in our further experiments.

Overall, the combinations had fairly stable performance
over seed values, with the highest range in r across seeds
being 0.81. Notably, the n value of 0 produced the 3 high-
est ranges (0.81, 0.69, and 0.56), indicating that the “blank
slate” weight extraction method led to a wider range of dis-
ruptions in produced schedules across random seeds.

Baseline Scheduling Performance
To show the efficacy of NICE scheduling, we ran our best
scheduling combination on the same disruption scenario,
this time using different percentages f of flights delayed.
We selected f values of 25%, 50%, 75%, and 100% and ran
each scenario 100 times. We compared NICE to directly us-
ing our RL agent or using the buffer integer program (with
Tbuffer = 4 days). We show the results of our buffer-rewarded
NICE scheduler in Table 1. During these runs, the buffer IP
and NICE scheduler had similar run times, both averaging
less than 0.85 seconds to create each schedule.

We note that, because the constraints are exactly the
same between the IP and NICE scheduling approaches, we
skipped recording the disruption value for the IP scheduler
if and only if we also skipped the disruption value for the
NICE scheduler. Because of this alignment, the p-values
comparing the two methods were obtained using a 2-tailed
dependent t-test for paired samples between the NICE and
IP schedulers. This was not the case for the RL approach,
which can generate a partial schedule, stopping when it is
not able to assign a pilot to the next slot due to its previous
decisions. When the RL approach created a partial sched-
ule, we did not record its performance on that schedule to
include in the average because it was unable to produce a
full schedule like the baseline IP and NICE schedulers. For
this reason, in the NICE vs. RL comparison, we use Welch’s
t-test for independent samples.

Highly-Constrained Scheduling Scenarios
In the schedule disruption scenario that we considered, the
buffer IP formulation had little trouble building a robust
schedule in a reasonable amount of time. However, the time
advantages of NICE become apparent in a more constrained
scheduling setting. To demonstrate this efficiency, we per-
formed the same experiment on NICE, averaging over 100
trials. This time, though, we used a scheduling density of 2,
creating twice the number of flights on average in each round
of scheduling. This scenario is realistic in settings where,
due to outside factors, many flights must be filled. For tim-
ing reasons, we only compared NICE with the baseline IP



% Flights Number of Disruptions Significance of Difference (p-value)
Delayed NICE Baseline IP RL Buffer IP NICE-Baseline NICE-RL NICE-Buffer

25 0.34 ± 0.71 0.61± 1.07 32.6± 7.33 0± 0 0.03 < 0.01 < 0.01
50 0.67 ± 0.92 1.16± 1.55 27.1± 7.13 0± 0 < 0.01 < 0.01 < 0.01
75 0.66 ± 0.99 1.13± 1.73 23.0± 6.34 0± 0 0.01 < 0.01 < 0.01

100 0.63 ± 0.82 1.06± 1.50 17.9± 6.29 0± 0 0.01 < 0.01 < 0.01

Table 1: Average and standard deviation of disruptions across scheduling methods when flights are delayed (lower values are
better). Scheduling density of 1.

% Flights Number of Disruptions Significance of Difference (p-value)
Delayed NICE Baseline IP RL NICE-Baseline NICE-RL

25 1.99 ± 1.99 2.99± 2.68 59.2± 13.1 < 0.01 < 0.01
50 3.17 ± 2.27 5.01± 4.33 51.2± 12.2 < 0.01 < 0.01
75 3.32 ± 2.33 6.32± 5.64 43.1± 12.4 < 0.01 < 0.01

100 2.81 ± 2.23 4.70± 4.49 35.4± 10.5 < 0.01 < 0.01

Table 2: Average and standard deviation of disruptions across scheduling methods when flights are delayed (lower values are
better). Scheduling density of 2. Buffer IP did not build a single schedule for 90 minutes and timed out, so we do not include it.

and the pure RL scheduler. We show the results for this ex-
periment in Table 2. Importantly, across all flight delay per-
centages, the NICE scheduler took an average of between
1.85 and 1.90 seconds to build a schedule, with a standard
deviation between 0.55 and 0.60 seconds. We ran the exact
same experiment for each disruption percentage for 10 it-
erations with the buffer-optimizing IP. However, we ended
each experiment after 90 minutes, at which point the buffer
IP had not finished building a single schedule.

Discussion
Our results clearly show the advantages of the NICE ap-
proach. In the baseline scheduling scenario, NICE produced
schedules that provided 40% to 45% of the disruption re-
duction of the buffer IP compared to the baseline IP. In a
powerful display of its usefulness, in a dense scheduling en-
vironment, NICE performed 33% to 48% better than the
baseline IP, producing 100 schedules with an average time
of less than 2 seconds while the buffer IP failed to produce
a single schedule in 90 minutes. In all of these experiments,
the NICE scheduler overwhelmingly outperformed the RL
scheduler from which it was derived. These outcomes indi-
cate that NICE can harness various advantages of IP and RL
scheduling to build a hybrid approach that improves on both
methods used independently.

In the less-constrained baseline scheduling environment,
NICE performed worse than the buffer IP, though it still did
better than the baseline. In this scenario, in a similar amount
of time as NICE, the buffer IP produced perfect schedules
with no disruptions after flights were delayed. This result
highlights the ideal use-case for NICE: situations where ap-
proximate results are useful and the size of the integer pro-
gram makes it infeasible to solve in a reasonable amount
of time. The more constrained (density = 2) scenario fits this
description well; the high number of flights in a shorter inter-
val created more constraints and variables than our IP solver
could handle. By contrast, NICE was able to produce a ro-

bust schedule in under 2 seconds, on average.

Conclusions and Future Work
We introduced NICE, a novel method for incorporating
knowledge gleaned from reinforcement learning into an in-
teger programming formulation. We applied this technique
to a robust crew scheduling problem, looking at the assign-
ment of pilots to flights so as to minimize schedule disrup-
tions due to flight delays. We used NICE to build a scheduler
for this problem where the RL agent proposes weights for
the selection of crew members, and the IP assigns the crew
members using those weights. In our experiments, NICE
outperformed both the baseline IP and the RL scheduler in
creating schedules that are resistant to disruptions. Further-
more, in certain practical environments that caused the ro-
bust scheduling (buffer IP) formulation to be prohibitively
slow, NICE was able to create a robust schedule in a matter
of seconds.

The introduction of nonlinear objectives or constraints
can deteriorate the computational performance of MIP and
IP solvers3. However, the reward structure used to train an
RL agent is not bound by such restrictions. While this paper
used NICE to approximate linear constraints and additional
variables in an IP, it would be interesting to see how the ap-
proach performs when faced with nonlinear constraints.

Finally, we have shown the efficacy of NICE in robust
crew scheduling. Given that IPs have long been a mainstay
of discrete optimization, we believe that the approach could
be useful in addressing other scheduling problems. Under-
standing the types of optimization problems for which NICE
is most effective is an interesting topic for further research.
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Appendix
Move-up Crews
We also considered another approach to obtaining more ro-
bust schedules, namely, move-up crews (Shebalov and Klab-
jan 2006). We found that move-up crews, even when op-
timally scheduled, did not create particularly robust sched-
ules, but we include our experimental results here for ref-
erence. For the sake of clarity, because we dealt with indi-
vidual pilots rather than crews, we will depart from the lit-
erature and use the term move-up pilot rather than move-
up crew. A move-up pilot is someone who, by nature of
their qualification and one of their scheduled flights, is read-
ily available to move up to another flight should someone
on that flight become unavailable, perhaps due to a delayed
flight.

IP Formulation We created an IP to increase move-up pi-
lots in our schedules. We first define a threshold, Tmove, for
how far out we should look for move-up pilots. Now, we give
a more formal definition of a move-up pilot: pilot j ∈ I , as-
signed to flight g ∈ F , is a move-up pilot for slot s ∈ Sf

on flight f ∈ F if and only if all of the following conditions
hold:
1. f ̸= g

2. Flight g starts at the same time as or later than flight f ,
and no later than Tmove days after f starts.

3. Flight g ends at the same time as or later than flight f .
4. Pilot j is not on leave that overlaps with f.
5. Pilot j is not scheduled to any flights that start before f

and overlap with f .
6. Pilot j is qualified for slot s.

Using constraints, we define the binary decision variable
Mjg,fs to be 1 if pilot j assigned to flight g is a move-up
pilot for slot s on flight f . We then use additional variables
to build an objective function to maximize the number of
move-up pilots in our final schedule. We can achieve this
with the following objective function:

max
∑
i∈I

∑
f,g∈F×F

∑
s∈Sf

Mjg,fs (4)

RL Training To train an RL scheduler to optimize for
move-up pilots, we followed the same experimental proce-
dure for the buffer-optimized RL scheduler, but we changed
the reward function. For move-up pilots, we give a reward of
m+1 whenever our agent assigns pilot j to a slot on flight g,
where m is the number slots on other flights that pilot j can
serve as a move-up pilot for. We use a maximum move-up
time (like Tmove) of 2 days. We did not do so out of concern
for program run time; on a practical level, moving a pilot to a
flight any more than 2 days earlier would cause a significant
burden on the pilot rather than supply the convenient sched-
ule alleviation that move-up pilots are supposed to provide.
Just like the reward function for buffers, we include a -10
penalty for incomplete schedules and a +25 reward for com-
plete schedules. We trained 15 total neural networks with
the move-up pilot reward structure, using 5 different random
seeds and schedule densities of 1, 2, and 3.

Model Selection We followed the same procedure as the
buffer-rewarded networks to select the best network and n
value to use for our weight extraction method. We used n
values of 0, 2, 4, and 8. We used this procedure to obtain r,
the ratio of average disruptions in the baseline IP schedule
to average disruptions in the NICE schedule with the cho-
sen parameters. r < 1 indicates that the NICE schedule had
fewer disruptions on average. The best median r value was
0.46, with a range of 0.38 (0.25 to 0.63), produced with a
scheduling density of 2 and an n value of 2. Two networks
with these parameters and different seed values produced
the median value, so we picked one arbitrarily. We used this
model in our subsequent experiments.

The range across seeds for our move-up-rewarded NICE
scheduler (0.38) was notably higher than the range for our
best buffer-rewarded scheduling method, which was 0.08.
Like the buffer-rewarded schedulers, the n/density combi-
nations also had fairly stable performance across random
seeds. The 3 highest ranges across random seeds were 0.88,
0.69, and 0.68. Similar to the buffer-rewarded schedulers,
the 2 highest ranges were produced by the “blank slate”
weight extraction method (n = 0).

Baseline Scheduling Performance Using the selected
model and n value, we ran the same disruption scenario as
the buffer-rewarded NICE scheduler over 100 iterations. We
compared the NICE scheduler against the baseline IP sched-
uler, the RL scheduler with the same underlying neural net-
work, and the move-up IP scheduler with a Tmove value of 2.
The results are shown in Table 3.

Discussion Based on our results, the move-up IP sched-
uler produced more robust schedules than any of the other
methods, but it did not perform as strongly as the buffer
IP scheduler, which entirely eliminated schedule disruptions
across all percentages of flights delayed in our previous ex-
periment. This weakness likely explains the performance of
the NICE scheduler based on the move-up reward function,
which showed no significant difference in schedule disrup-
tions compared to the baseline IP scheduler. Because of the
relative inefficacy of increasing the number of move-up pi-
lots in producing robust schedules, we decided to focus our
efforts on using buffers to reduce disruptions in our main
work.

Implementation Details

Hyperparameters

We built our PPO code on top of OpenAI’s SpinningUp
library (Achiam 2018) in PyTorch (Paszke et al. 2019).
We used the default values for all PPO related hy-
perparameters used in the SpinningUp repository. Each
model was trained for 5,000 epochs on a computer with
40 Intel Xeon-P8 CPUs. We utilized the MPI (Dalcin
et al. 2011) version of the PPO implementation in Spin-
ningUp to run 40 parallel processes to train the model.



% Flights Number of Disruptions Significance of Difference (p-value)
Delayed NICE Baseline IP RL Move-up IP NICE-Baseline NICE-RL NICE-Move-up

25 0.63 ± 0.93 0.61± 1.07 32.6± 7.42 0.33± 0.63 0.88 < 0.01 < 0.01
50 1.05 ± 1.13 1.16± 1.55 27.6± 7.24 0.68± 0.90 0.51 < 0.01 < 0.01
75 1.19 ± 1.25 1.13± 1.73 23.9± 6.44 0.74± 1.04 0.73 < 0.01 < 0.01

100 1.11 ± 1.14 1.06± 1.50 19.1± 6.47 0.65± 0.88 0.76 < 0.01 < 0.01

Table 3: Average and standard deviation of disruptions across scheduling methods when flights are delayed (lower the better).
Scheduling density of 1. The NICE and RL schedulers used the move-up reward function in their underlying neural network.

Number of epochs 5,000
Steps per epoch 4,000
Policy learning rate 3e-4
Critic learning rate 1e-3
Hidden layer dimension 64
Number of layers 2
γPPO 0.99
λPPO 0.97
PPO clip ratio 0.2
Target KL (PPO) 0.01

Computing Infrastructure
Each model was trained on a computer with 40 Intel Xeon-
P8 CPUs. We utilized Message Passing Interface (MPI) to
run 40 parallel process to speed up the episode rollout pro-
cess. All the schedule disruption experiments were run on
an Intel Core i7 laptop with 32 GB of RAM, solving the IPs
with Gurobi Optimizer (Gurobi Optimization, LLC 2021),
version 9.1.2.
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