
NICE: Robust Scheduling through Reinforcement
Learning-Guided Integer Programming

Luke Kenworthy 1, Siddharth Nayak 2, Christopher Chin 2, Hamsa Balakrishnan 2

1 MIT-Air Force AI Accelerator
2 Massachusetts Institute of Technology

{lukek, sidnayak, chychin, hamsa}@mit.edu

Abstract

Integer programs provide a powerful abstraction for representing a wide range of
real-world scheduling problems. Despite their ability to model general schedul-
ing problems, solving large-scale integer programs (IP) remains a computational
challenge in practice. The incorporation of more complex objectives such as robust-
ness to disruptions further exacerbates the computational challenge. We present
NICE (Neural network IP Coefficient Extraction), a novel technique that combines
reinforcement learning and integer programming to tackle the problem of robust
scheduling. More specifically, NICE uses reinforcement learning to approximately
represent complex objectives in an integer programming formulation. We use NICE
to determine assignments of pilots to a flight crew schedule so as to reduce the
impact of disruptions. We compare NICE with (1) a baseline integer programming
formulation that produces a feasible crew schedule, and (2) a robust integer pro-
gramming formulation that explicitly tries to minimize the impact of disruptions.
Our experiments show that, across a variety of scenarios, NICE produces schedules
resulting in 33% to 48% fewer disruptions than the baseline formulation. Moreover,
in more severely constrained scheduling scenarios in which the robust integer
program fails to produce a schedule within 90 minutes, NICE is able to build robust
schedules in less than 2 seconds on average.

1 Introduction

Scheduling is a ubiquitous type of discrete optimization problem that is often solved using integer
programs (IPs) or mixed-integer programs (MIPs). While IPs and MIPs lend themselves to modeling a
very wide range of scheduling problems, solving large-scale instances in practice can be computational
challenging.

In most pragmatic applications, it is also important that the schedules be robust to uncertainties.
Robust scheduling involves the building of schedules that will undergo minimal change when faced
with unknown future disruptions. While MIP formulations of scheduling problems can be extended
to represent robustness objectives, the resulting problems are often much more computationally
challenging than their baseline, non-robust counterparts. Even with state-of-the-art solvers, such
extensions to accommodate robustness can add hours to the time needed to compute an optimal
schedule, sometimes making them impractical for real-world use.

Research was sponsored by the United States Air Force Research Laboratory and the United States Air Force
Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement Number FA8750-19-
2-1000. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the United States Air Force or
the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.



In this paper, we propose a technique, Neural network IP Coefficient Extraction (NICE), that seeks
to find a quick-but-approximate solution to a scheduling problem with an additional robustness
objective, by using reinforcement learning (RL) to guide the IP formulation. We first determine a
feasible schedule using a baseline IP. We simultaneously train an RL model to build a schedule for
the same problem, using a reward function that leads to more robust schedules (but that would have
added considerable computational burden if encoded directly in the IP formulation). Then, rather
than use the RL model to create a schedule directly, we use the probabilities in its output layer to
assign coefficient weights to the decision variables in our simpler IP to create a feasible schedule. By
doing so, we leverage the intuition behind knowledge distillation [1] that the distribution of values in
the output layer of a neural network contains valuable information about the problem.

NICE allows us to approximate the robust scheduling objective function with significantly fewer
variables and constraints. We find that, across a variety of disruption scenarios, our approach creates
schedules with 33% to 48% fewer changes than than the baseline. Moreover, in certain practical
problem instances, it is able to do so in a matter of seconds; the corresponding IP that explicitly
optimizes for robustness fails to produce a solution within 90 minutes for the same scenarios.

The main contribution of this paper is the introduction of a new technique to approximate complicated
IP formulations using RL. To the best of our knowledge, NICE is the first method to use information
extracted from neural networks in IP construction. We illustrate the performance of NICE in the
context of robust flight crew scheduling, by using NICE to create disruption-resistant crew schedules
(i.e., assignments of pilots to flights).

2 Background and Related Work

Personnel scheduling has been a long-standing challenge in Operations Research, and has been the
focus of much research over the past several decades [2, 3]. Integer programs (IPs) and mixed integer
programs (MIPs)1 have been widely-used for personnel scheduling, in large part due to their ability
to represent general scheduling problems. However, despite the power of IPs to model scheduling
problems, solving large-scale IPs in practice is often computationally challenging [4].

Most real-world applications also need robust schedules, namely, schedules that do not require
considerable adjustments to personnel assignments in the event of an unforeseen disruption. While
robust MIP-based formulations of scheduling problems can be developed, they are usually at least as
computationally challenging as their non-robust counterparts [5, 6, 7, 8].

The scheduling of flight crews (e.g., pilots) is a personnel scheduling problem that arises in the context
of aviation [9, 10, 11, 12]. Similar to other scheduling problems, crew scheduling has traditionally
been tackled using large-scale IPs, both for airline and military flight crews [13, 14, 15]. Flight delays
are the main cause of disruption to crew schedules in commercial aviation; buffers (or slack in the
schedule) have therefore been considered as a mechanism to achieve schedule stability amidst flight
delays [16, 17]. A buffer refers to the amount of time between the successive flights flown by a
particular pilot. By increasing these buffers, a new pilot assignment is less likely to be needed due the
initially-planned pilot being delayed, and therefore being unable to make the flight. In recent work,
Chin [18] considers an IP-based formulation for the incorporation of such buffers into flight crew
schedules, in the context of an application to an air force squadron.

2.0.1 Learning-Based Approaches to Scheduling

Successes in deep (reinforcement) learning have motivated research that focus on obtaining end-
to-end solutions to combinatorial optimization problems; e.g., the travelling salesman problem
[19, 20, 21, 22, 23] and the satisfiability problem (SAT) [24, 25]. RL has also been used in the
resource management and scheduling domains on a diverse set of real-world applications. Gomes
[26] uses an asynchronous variation of the actor-critic method (A3C) [27] to minimize the waiting
times of patients at healthcare clinics. The lack of readily available optimization methods for this
problem due to the ad-hoc nature of patient appointment scheduling motivates the usage of RL for
this application to model the uncertainty. Mao et al. [28] introduce DeepRM which uses resource
occupancy status in the form of images as the states and use neural networks for training the RL

1We use the terms integer program (IP) and integer linear program (ILP) interchangeably unless noted
otherwise; similarly for mixed-integer program (MIP) and mixed-integer linear program (MILP).

2



agent. Chen et al. [29] improve upon DeepRM by modifying the state-space, reward structure and
the network used in the DeepRM paper. Chinchali et al. [30] use RL for cellular network traffic
scheduling. They incorporate a history of the states observed to re-cast the problem as a Markov
Decision Process (MDP) [31] from a non-Markovian setting. Along with this modification, they
construct a reward function which can be changed by the operators according to preference. In all of
the works above, the models used application-specific state space, action space and reward structures
to optimize special-purpose objective functions to create schedules.

In recent work, Nair et al. [32] use a bipartite graph representation of a MIP and leverage graph
neural networks [33, 34] to train a generative model over assignments of the MIP’s integer variables.
In contrast to this approach, we do not use generative models to solve an IP formulation, but instead
use RL to formulate the IP itself. Very recent work by Ichnowski et al. [35] uses RL to speed up the
convergence rates in quadratic optimization problems by tuning the inner parameters of the solver.

2.0.2 Knowledge Distillation

Hinton et al. [1] explored the use of internal neural network values to distill the knowledge learned
by a model. They reasoned that the probabilities in a neural network’s output layer carry useful
information, even if only the maximum probability value is used for ultimate classification: “An
image of a BMW, for example, may only have a very small chance of being mistaken for a garbage
truck, but that mistake is still many times more probable than mistaking it for a carrot.”

In their work, Hinton et al. [1] used the values from the input to the output layer of a larger neural
network (known as the logits), as well as the training data itself, to train a smaller neural network.
This smaller neural network achieved fewer classification errors than a network of the same size
trained only on the training data. They also used a similar approach to train a neural network on
speech recognition data, this time training a network with the same architecture as a neural network
trained on the data directly. They found that the new, distilled model performed better than the
original one; it also matched 80% of the accuracy gains attained by averaging an ensemble of 10
neural networks with the same architecture, each initialized with different random weights at the
beginning of training. Our approach uses the probabilities output by a neural network to extract
objective function coefficient weights, leveraging the intuition of Hinton et al. [1].

3 Approach

3.1 Crew Scheduling Problem

In this paper, we seek to build robust schedules for a version of the flight crew scheduling problem
(hereafter referred to as the “crew scheduling problem", which has a long history in both commercial
and military aviation [36, 37, 38]. We consider the scenario in which we are given a collection of
flights that must be flown by a given squadron (i.e., a group) of pilots. Every flight has multiple slots,
each of which must be filled by a different pilot. Each slot has qualification requirements that must be
satisfied by any pilot who is assigned to that slot. Depending on their qualification, a pilot would only
be eligible to fill a subset of slots. Finally, every pilot has some specified availability (or alternatively,
a list of dates on which they are on “leave" and therefore cannot be scheduled to fly). We assume that
a day is the time-discretization of our schedules, although this could be generalized to another choice
of time unit. In other words, a feasible schedule assigns a specific pilot to every slot that is on every
flight flown on each day in the scheduling horizon, such that the qualification requirements for the
slots and the availability restrictions of the pilots are satisfied.

3.2 Baseline Integer Program Formulation

Chin [18] and Koch [15] created a baseline IP for the crew scheduling problem, producing a satisfying
assignment with respect to all relevant constraints. We use a similar construction for our baseline IP,
with the primary difference of having the decision variable for the assignment of each pilot to each
slot rather than each pilot to each flight. We define the following sets and subsets:

3



i ∈ I The set of pilots
f ∈ F The set of flights
s ∈ S The set of all slots

Uf ⊂ F Flights that conflict with flight f
Li ⊂ F Flights that conflict with pilot i’s leave
Sf ⊂ S The set of slots belonging to flight f
Qi ⊂ S Slots that pilot i qualifies for

We use the binary decision variable Xis, which is 1 if pilot i ∈ I is assigned to slot s ∈ S, and 0
otherwise. We now have the following equation:

max
∑
i∈I

∑
s∈S

Xis (1.1)

such that:

Xis = 0 ∀i ∈ I, f ∈ Li, s ∈ Sf (1.2)
Xis = 0 ∀i ∈ I, s ∈ S \Qi (1.3)∑

s∈Sf

Xis ≤ 1 ∀i ∈ I, f ∈ F (1.4)

∑
i∈I

Xis = 1 ∀s ∈ S (1.5)

∑
s∈Sf

Xis +
∑

s′∈Sf′

Xis′ ≤ 1 ∀i ∈ I, f ∈ F, f ′ ∈ Uf (1.6)

Xis ∈ {0, 1} ∀i ∈ I, s ∈ S (1.7)

Constraints 1.2 and 1.3 ensure that pilots are only assigned to slots that they are qualified for, and
that pilots will never be assigned to flights that conflict with their leave. Constraint 1.4 prevents the
scheduling of pilots to multiple slots on the same flight. Constraint 1.5 ensures that every slot gets
filled by exactly one pilot. Constraint 1.6 prevents assignment of pilots to conflicting flights. We
make our pilot-slot decision variable binary with Constraint 1.7. Finally, Equation 1.1 ensures that we
fill as many slots as possible. Due to our requirement that each slot have exactly one pilot associated
with it, this equation always produces the same objective value.

3.3 Buffer Formulation

Chin [18] utilizes additional constraints and decision variables to optimize schedules for robustness
by increasing the amount of buffer time between flights. For our purposes, we consider the buffer
time between two flights to be the number of full days between their start and end time. For example,
say pilot X is assigned to flights A and B; flight A ends on day 1, and flight B starts on day 5. We say
that there is a buffer time of 3 days for pilot X in this instance, since there are 3 days between days 1
and 5, exclusive.

To incorporate buffers into an IP, Chin identifies all flight pairings that would create a buffer less than
or equal to some maximum threshold, Tbuffer, used to dampen the complexity of realistic problem
instances. Then, the author creates a {0, 1} decision variable Biff ′ for all pilots i ∈ I and flights
f, f ′ ∈ F × F . The author uses constraints to ensure that Biff ′ is 1 if and only if the following
conditions are met:

1. f 6= f ′

2. Pilot i qualifies for at least one slot in both f and f ′.
3. f and f ′ have a buffer between 0 and Tbuffer, inclusive.

4



Figure 1: (1) Random events are generated using the process described in the Experiments Section. (2)
Slots in the events are randomly shuffled if using the Monte Carlo Approach. (3) State representations
are extracted for each event from the given set of randomly generated events. (4) The states are
given as input to the RL agent. (5) Create n different schedules using the RL agent. (Note that these
schedules are not the final schedules.) (6) The probability outputs at each timestep are used in the
objective function for the IP formulation as given in Equation 3 to create the final schedules using the
IP solver

4. Pilot i is assigned to both f and f ′, without any flights in between.

The author then defines a buffer penalty biff ′ ∈ [−1, 0) that gets increasingly negative for higher
buffers: down to -1 when the buffer between f and f ′ is 0, and closest to 0 when the buffer is Tbuffer.
Note that buffers longer than Tbuffer effectively have a penalty of 0. Finally, they incorporate all of
this into the following objective function to optimize buffer time across the schedule:

max
∑
i∈I

∑
f,f ′∈F×F

biff ′Biff ′ (2)

In our buffer IP, we incorporate this formulation with the assistance of additional auxiliary {0,1}
decision variables for each pilot-flight combination, setting it to 1 if a pilot is assigned to any slot on
a given flight, and 0 otherwise. In our experiments, we found that, in certain problem instances, the
buffer IP was highly effective in producing robust schedules.

Chin’s work also introduced an integer program formulation that incorporated the concept of move-up
crews [39] to increase robustness. However, in our testing, this integer program did not produce
particularly robust schedules, so we focused our attention on buffers.

3.4 Reinforcement Learning Formulation

We model the building of a valid schedule with a discrete event simulation (DES): at each time step,
we take an action, which affects the state of our system. The main idea of our reinforcement learning
scheduling approach is to order the slots that need to be scheduled and, at each slot, pick a pilot to
assign to that slot. This technique, previously used by Washneck et al. [40] for production scheduling,
gives us an action space size equal to the number of pilots. If we get through all of the slots, we end
up with a complete schedule, though filling all of the slots is not a guarantee; the RL scheduling
agent could back itself into a corner, leaving no pilots to assign to a given slot based on its previous
decisions. We choose to use Proximal Policy Optimization (PPO) [41] with a discrete action space
to train deep neural networks for actor and critic network estimation. The actor network gives a
probability distribution over the pilots to choose given the state input.

3.5 NICE

In our early exploration, when building schedules with non-robustness objectives, the RL-produced
schedules would often approach the effectiveness of the IP schedules with respect to the optimized
metrics, but they would never do better. This observation gave us two key insights. First, the RL

5



model assigns pilots to slots sequentially, operating almost in a greedy fashion. Granted, it is trying
to maximize its expected total discounted reward, but once it makes an assignment, it cannot change
it. Further, the RL agent does not have a perfect view of the full schedule in its state space, meaning
it has imperfect information at the time of each pilot assignment. This sequential decision making
lacks in comparison to the global view of the IP scheduling approach, where we optimize an objective
function across all pilot assignments, factoring in the complex interplay of related constraints. Second,
it was clear that our RL scheduling agent was capable of learning. While it could not match the
performance of the IP schedules in our preliminary exploration, it still produced schedules with
considerably better objective performance than the baseline. When scheduling objectives can easily
be captured in an IP, this observation is not particularly helpful. However, for more complicated
optimizations that integer programming struggles with, this insight proves useful: to avoid the greedy
pitfalls of RL for scheduling while still leveraging the knowledge learned by our neural network, we
can use the probabilities produced by the output layer in our IP scheduling formulation.

These two observations motivated the creation of NICE. NICE uses RL to approximate sophisticated
integer programs with a simpler formulation. We can use this technique to build an approximately-
optimal solution to the crew scheduling problem. We set up our baseline integer program to build a
schedule, but modify the objective function given in Equation 1.1. The objective function maximizes
the number of pilots assigned across the schedule but, because of our constraint that assigns exactly
one pilot to each slot (Constraint 1.5), our objective value is fixed across all satisfying pilot-slot
assignments. Our decision variable, Xis, is 1 if pilot i is assigned to slot s and 0 otherwise. This
variable aligns neatly with our RL scheduling formulation, which considers slots in a fixed order. At
each slot, it produces a probability for each pilot that captures how likely assigning that pilot to that
slot is to maximize the expected total discounted reward in a given scheduling episode. It then assigns
the pilot with the maximum probability to that slot. We can use ais to refer to the probabilities output
by the network for the assignment of pilot i to slot s. Now, to leverage the knowledge learned by the
RL scheduling approach in our IP formulation, we can incorporate ais into our objective function:

max
∑
i∈I

∑
s∈S

aisXis (3)

With this new equation, our IP scheduling approach is incentivized to pick the pilot with the highest
probability possible at each slot, only selecting pilots with lower probabilities if constraints forbid
such an assignment. This new formulation approximately captures the reward function used by the
RL agent while giving it a global view of pilot assignment.

3.6 Extracting Probability Weights

An important issue we had to address was the extraction of ais from our RL neural network. The
actions taken at each state of the RL scheduling process can impact the pilot probability vector at
later states. Thus, the order that the RL scheduler fills the slots has a potentially problematic impact
on the ais weights. Simply running the RL scheduling process as normal on a given problem instance
while extracting the probability vector at each slot could cause the specific actions taken to bias our
ais values, diminishing the advantage of the IP scheduler’s global outlook.

In our experiments, we used two different approaches. In the first one, we took a Monte Carlo
approach, trying to approximate the average weight across all possible orders of scheduling the slots.
In this approach, we randomly shuffled the order of slots that the RL scheduler had to assign and
then recorded the ais weights at each step of the scheduling process. We ran this process n times
to get n total ais values for each pilot-slot pair. If the RL agent could not fill a slot in that round of
scheduling, we set the ais value to 0. We then averaged the n values for each pilot-slot pair to get our
final ais values. Note that this causes the scheduling process to take longer for higher values of n
because it has to run more RL scheduling rounds.

The next approach, which we call the “blank slate” approach, exploited the fact that the probability
weights for the pilots produced by the first slot are not dependent on any previous actions taken. Thus,
we can make each slot our first slot to get weights that are not dependent on previous decisions made.
To do so, for each slot s in our fixed order, we initialized a new RL agent with the same underlying
neural network, cutting out all of the states that occur before s then extracting the ais values for the
pilots on that slot.

6



3.7 Incorporating Robustness

To use NICE to build robust schedules, we train an RL scheduler to optimize buffer time in its
assignments. To do so, we include a reward of b + 1 whenever the RL agent places a pilot on an
event that forms a buffer of length b with the pilot’s most recent event. We add +1 term to reward
the agent for making a placement, regardless of buffer. We give the agent a reward of T − 1 when
it places a pilot with no previous events scheduled. We chose T − 1 because this is the maximum
reward for the T -day schedules that the RL agent trains on. For example, imagine pilot X is assigned
to a 0-day flight starting and ending on day 1. If the pilot were assigned to a flight starting on day
7, that assignment would earn a reward of 6, because there are 5 days between day 1 and day 7,
exclusive. We do not use a maximum buffer value like Tbuffer in the IP formulation because larger
Tbuffer values do not noticeably affect the run time of our program like it does with the IP. We included
two exceptions to this reward policy. First, to incentivize building full schedules, the agent earns a
reward of 25 when all slots in an episode are scheduled. Second, to deter the creation of schedules,
we give the agent a reward of −10 when it is unable to schedule all events in an episode.

4 Experiments

To train our RL agent, we created an OpenAI Gym [42] type environment for the crew scheduling
problem. We utilized an anonymized dataset from a US Air Force flying squadron to construct a
random event generator. The dataset contained 87 pilots with 32 different qualifications. It also
consisted of a log of flights flown over about 6 months which amounted to a total of 801 flights,
each containing between 2 and 3 slots. There were 16 different total types of flights, where the type
determined the qualification requirements for the slots on the flight. These flights were subdivided
into two categories: missions and simulators, which we treat equivalently except for the purposes of
our random event generation. There were 7 mission types and 9 simulator types. We trained our RL
agent on randomly generated flights based off of this dataset. To generate the random flights, we first
divided our dataset into simulators and missions that started in 26 different full-week intervals. For
each week, to generate a random set of events, we created α random mission based flights, where α is
drawn from a normal distribution with a mean and standard deviation equal to the mean and standard
deviation of missions across all 26 weeks. Similarly, we also create β random simulator-based flights,
where β is drawn from a similar distribution that uses simulators instead of missions. The dataset
also contained a variety of training requirements that each pilot, ideally, would fulfill; the number of
times the pilot should fulfill each requirement; and information about which flight satisfied which
training requirements. Along with the training requirement information, each flight contained two
binary training requirement qualifiers (TRQs) to help determine which training requirements the
flight fulfilled. Note that we did not use the training requirement information outside of the state
space formulation for our RL scheduler.

For each flight generated, we picked a random day in the scheduling week for it to start. We
then randomly pick a type for the flight, where the probability of picking that type of mission was
proportional to the number of times it showed up in the dataset. To determine the length of duration
for the flight, we randomly sample a flight of the selected type from the dataset and use the length
of duration of sampled flight’s length. We followed an identical process to generate each simulator,
except each simulator started and ended on the same day, so we did not randomly pick a length. The
dataset provides the dates each pilot is on leave, which we used directly. Then we created a fixed
ordering of slots that need to be scheduled. We order the slots first by the corresponding flight’s start
date and use the flight’s arbitrary unique ID as a tie-breaker. We order slots of the same flight by
ascending qualification. The assignment of a pilot to a slot serves as a time-step in our DES.

The state space for the RL agent includes:

1. The pilots available for the current slot, encoded as a binary vector.
2. A flattened vector encoding the current event to be scheduled, consisting of:

(a) A one-hot encoding of the event type
(b) A binary vector indicating whether each TRQ was true or false.
(c) A binary vector representing the pilots assigned to the current event. (Note that each

event may have 2-3 pilot slots)
(d) The event duration (in days)

7



% Flights Number of Disruptions Significance of Difference
(p-value)

Delayed NICE Baseline IP RL Buffer IP NICE- NICE- NICE-
Baseline RL Buffer

25 0.34± 0.71 0.61± 1.07 32.6± 7.33 0.0± 0.0 0.03 < 0.01 < 0.01
50 0.67± 0.92 1.16± 1.55 27.1± 7.13 0.0± 0.0 < 0.01 < 0.01 < 0.01
75 0.66± 0.99 1.13± 1.73 23.0± 6.34 0.0± 0.0 0.01 < 0.01 < 0.01
100 0.63± 0.82 1.06± 1.50 17.9± 6.29 0.0± 0.0 0.01 < 0.01 < 0.01

Table 1: Average and standard deviation of disruptions across scheduling methods when flights are
delayed (lower values are better). Scheduling density of 1.

(e) The number of days between the start of the scheduling episode and the start of the
event

(f) The number of days between the start of the scheduling episode and the end of the
event

3. A vector containing the total number of training requirement fulfillments each pilot could
receive for flying that event, if it were flown a sufficient number of times

We built our PPO code on top of OpenAI’s SpinningUp library [43] in PyTorch [44]. To build the
neural network for our NICE scheduler, we trained a variety of models with different hyperparameter
combinations. One of the hyperparameters of particular interest was the training schedule density,
d. Recall that we scheduled α flights and β simulators in a round of scheduling. During training,
we multiplied α and β by d so the agent would schedule more flights in the same time period. We
trained RL models with d ∈ {1, 2, 3}. We trained a model with 5 different seeds for each value of
d, ultimately creating 3× 5 = 15 different neural networks for testing. We used the default values
for all PPO related hyperparameters used in the SpinningUp repository. Each model was trained for
5,000 epochs on a computer with 40 Intel Xeon-P8 CPUs. We utilized the MPI [45] version of the
PPO implementation in SpinningUp to run 40 parallel processes to train the model. Source code for
our experiments is available at https://github.com/nsidn98/NICE

4.1 Scheduling Parameter Selection

For further experimentation, we had to pick the best combination of RL model and weight extraction
method to use. We parameterize our weight extraction methods with the variable n, where n = 0
represents the “blank slate” extraction method mentioned previously, and n > 0 represents the n
value used in the Monte Carlo approach.

To select the best combination, we built an environment where, using the same flight generation
process to train the RL scheduler, we generate 1 week’s worth of flights. From these flights and
associated slots, we generate pilot-slot pairings using the baseline integer program and the NICE
schedule with weights extracted from the selected RL network and the given n value. Next, one
day into the schedule, we delayed 50% of the flights that had not already left. We pushed back
each flight by a number of days randomly chosen uniformly between 1 and 3, figuring that delays
longer than 3 days were relatively rare. To fix this disruption in both of these schedules, we used an
integer program that minimized the number of changes to the pilot-slot pairings. From this disruption
resolver, we end up with the number of disruptions that occurred under each schedule. Sometimes,
we would randomly generate a series of flights that made it impossible for the IP or NICE approach
to schedule because a pilot-slot pairing did not exist that met all of the constraints. In these cases, we
skipped to the next series of randomly-generated flights, not recording any disruption data because
there was no schedule to disrupt. Then, for each neural network and for each n value n ∈ {0, 2, 4, 8}
(60 experiments total), we ran this scenario 20 times, comparing the average number of schedule
disruptions between the baseline IP and the NICE scheduler across those 20 runs. We ran these
experiments, and all subsequent ones, on an Intel Core i7 laptop with 32 GB of RAM, solving the IPs
with Gurobi Optimizer [46], version 9.1.2.

We calculated the ratio of disruptions, r, between the two methods, where r < 1 indicates that the
NICE method provided a schedule with fewer disruptions on average than the IP baseline. We then
determined the median r value over seed values for each training density and weight extraction

8

https://github.com/nsidn98/NICE


% Flights Number of Disruptions Significance of Difference (p-value)
Delayed NICE Baseline IP RL NICE-Baseline NICE-RL
25 1.99± 1.99 2.99± 2.68 59.2± 13.1 < 0.01 < 0.01
50 3.17± 2.27 5.01± 4.33 51.2± 12.2 < 0.01 < 0.01
75 3.32± 2.33 6.32± 5.64 43.1± 12.4 < 0.01 < 0.01
100 2.81± 2.23 4.70± 4.49 35.4± 10.5 < 0.01 < 0.01

Table 2: Average and standard deviation of disruptions across scheduling methods when flights are
delayed (lower values are better). Scheduling density of 2.

method combination. We used the lowest median r value to determine our final scheduling method
and underlying neural network for NICE. As a result of this process, we obtained a network trained
with a density of 1 and an n value of 2. In this case, across seed values, the three networks produced
the same median value for this combination, so we arbitrarily chose a network from those three
models. The median r value was 0.25, with a range of 0.08 (0.25 to 0.33). We used this network and
n value in our further experiments.

Overall, the combinations had fairly stable performance over seed values, with the highest range in r
across seeds being 0.81. Notably, the n value of 0 produced the 3 highest ranges (0.81, 0.69, and
0.56), indicating that the “blank slate” weight extraction method led to a wider range of disruptions
in produced schedules across random seeds.

4.2 Baseline Scheduling Performance

To show the efficacy of NICE scheduling, we ran our best scheduling combination on the same
disruption scenario, this time using different percentages of flights delayed, f . We selected f values
of 25%, 50%, 75%, and 100%. We ran each scenario 100 times. We also built a schedule using our
RL agent directly and with the buffer integer program (with Tbuffer = 4 days) for comparison. We
show the results of our buffer-rewarded NICE scheduler in Table 1. During these runs, the buffer
IP and NICE scheduler had similar run times, both averaging less than 0.85 seconds to create each
schedule.

We note that, because the constraints are exactly the same between the IP and NICE scheduling
approaches, we skipped recording the disruption value for the IP scheduler if and only if we also
skipped the disruption value for the NICE scheduler. Because of this alignment, the p-values
comparing the two methods were obtained using a 2-tailed dependent t-test for paired samples
between the NICE and IP schedulers. This was not the case for the RL approach, which can generate
a partial schedule, stopping when it is not able to assign a pilot to the next slot due to its previous
decisions. When the RL approach created a partial schedule, we did not record its performance on
that schedule to include in the average because it was unable to produce a full schedule like the
baseline IP and NICE schedulers. For this reason, in the NICE vs RL comparison, we use Welch’s
t-test for independent samples.

4.3 Highly-Constrained Scheduling Scenarios

In the schedule disruption scenario that we considered, the buffer IP formulation had little trouble
building a robust schedule in a reasonable amount of time. However, the time advantages of NICE
become apparent in a more constrained scheduling setting. To demonstrate this efficiency, we
performed the same experiment on NICE, averaging over 100 trials. This time, though, we used a
scheduling density of 2, creating twice the number of flights on average in each round of scheduling.
This scenario is realistic in settings where, due to outside factors, many flights must be filled. For
timing reasons, we only compared NICE with the baseline IP and the pure RL scheduler. We show
the results for this experiment in Table 2. Importantly, across all flight delay percentages, the NICE
scheduler took an average of between 1.85 and 1.90 seconds to build a schedule, with a standard
deviation between 0.55 and 0.60 seconds. We ran the exact same experiment for each disruption
percentage for 10 iterations with the buffer-optimizing IP. However, we ended each experiment after
90 minutes, at which point the buffer IP had not finished building a single schedule.

9



5 Discussion

Our results clearly show the advantages of the NICE approach. In the baseline scheduling scenario,
NICE produced schedules that provided 40% to 45% of the disruption reduction of the buffer IP
compared to the baseline IP. In a powerful display of its usefulness, in a dense scheduling environment,
NICE performed 33% to 48% better than the baseline IP, producing 100 schedules with an average
time of less than 2 seconds while the buffer IP failed to produce a single schedule in 90 minutes. In
all of these experiments, the NICE scheduler massively outperformed the RL scheduler from which
it was derived. These outcomes indicate that NICE can harness various advantages of IP and RL
scheduling to build a hybrid approach that improves on both methods used independently.

In the less-constrained baseline scheduling environment, NICE did not compete favorably against the
buffer IP, though it still did better than the baseline. In this scenario, in a similar amount of time as
NICE, the buffer IP produced perfect schedules with no disruptions after flights were delayed. This
result highlights the ideal use-case for NICE: situations where approximate results are useful and the
size of the integer program makes it infeasible to solve in a reasonable amount of time. The more
constrained (density = 2) scenario fits this description well; the high number of flights in a shorter
interval created more constraints and variables than our IP solver could handle. By contrast, NICE
was able to produce a robust schedule in under 2 seconds, on average.

5.1 Conclusions and Future Work

We introduced NICE, a novel method for incorporating knowledge gleaned from reinforcement
learning into an integer programming formulation. We applied this technique to a robust optimization
problem, looking at the assignment of pilots to flights so as to minimize schedule disruptions
due to flight delays. We used NICE to build a scheduler for this problem where the RL agent
proposes weights for the selection of crew members and the IP assigns the crew members using those
weights. We performed experiments on the crew scheduling problem. Our results show that NICE
outperformed both the baseline IP and the RL scheduler in creating schedules that are resistant to
disruptions. Furthermore, in certain practical environments that caused the robust scheduling (buffer
IP) formulation to be prohibitively slow, NICE was able to create a robust schedule in a matter of
seconds.

The introduction of nonlinear objectives or constraints significantly deteriorates the computational
performance of MIP and IP solvers2. However, the reward structure used to train an RL agent
is not bound by such restrictions. While we used NICE to approximate several linear constraints
and additional variables in an IP, it would be interesting to see how the approach performs when
approximating a nonlinear objective that cannot be formulated as an integer linear program. Next, to
the best of our knowledge, IP or MIP formulations have previously not used information derived from
a neural network to determine their objective functions. We applied this technique to the domain of
robust scheduling, and found that it could efficiently produce robust schedules. Given that IPs have
long been a mainstay of discrete optimization, we believe that these results indicate that NICE could
be useful in addressing other scheduling problems.

Acknowledgements

The authors would like to thank the MIT SuperCloud [47] and the Lincoln Laboratory Supercomputing
Center for providing high performance computing resources that have contributed to the research
results reported within this paper.

References
[1] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

[2] George B. Dantzig. Letter to the Editor — A Comment on Edie’s “Traffic Delays at Toll Booths". Journal
of the Operations Research Society of America, 2(3):339–341, 1954.

[3] Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester, and Liesje De Boeck.
Personnel scheduling: A literature review. European Journal of Operational Research, 226(3):367–385,
2013.

2The underlying formulations are no longer integer linear programs or mixed-integer linear programs

10



[4] Christos Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms and Complexity.
Dover, 1998.

[5] Dori van Hulst, Dick Den Hertog, and Wim Nuijten. Robust shift generation in workforce planning.
Computational Management Science, 14(1):115–134, 2017.

[6] Robin Vujanic, Paul Goulart, and Manfred Morari. Robust optimization of schedules affected by uncertain
events. Journal of Optimization Theory and Applications, 171(3):1033–1054, 2016.

[7] Emily Craparo, Mumtaz Karatas, and Dashi I. Singham. A robust optimization approach to hybrid
microgrid operation using ensemble weather forecasts. Applied Energy, 201:135–147, 2017.

[8] Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and network flows. Mathematical
Programming Series B, 98:49–71, 2003.

[9] Craig Gibson Honour. A computer solution to the daily flight schedule problem. Master’s thesis, Naval
Postgraduate School, 1975.

[10] Alberto Caprara, Paolo Toth, Daniele Vigo, and Matteo Fischetti. Modeling and solving the crew rostering
problem. Operations Research, 46(6):820–830, 1998.

[11] S. Jacobs, Roger. Optimization of daily flight training schedules. Master’s thesis, Naval Postgraduate
School, 2014.

[12] Zizhen Zhang, MengChu Zhou, and Jiahai Wang. Construction-based optimization approaches to airline
crew rostering problem. IEEE Transactions on Automation Science and Engineering, 17(3):1399–1409,
2020.

[13] Niklas Kohl and Stefan E. Karisch. Airline Crew Rostering: Problem Types, Modeling, and Optimization.
Annals of Operations Research, 127:223–257, 2004.

[14] J. Slye, Robert. Optimizing training event schedules at naval air station fallon. Master’s thesis, Naval
Postgraduate School, 2018.

[15] Matthew J Koch. Air force crew scheduling: An integer optimization approach. Master’s thesis, MIT,
2021.

[16] Cheng-Lung Wu. Inherent delays and operational reliability of airline schedules. Journal of Air Transport
Management, 11(4):273–282, 2005.

[17] Jan K. Brueckner, Achim I. Czerny, and Alberto A. Gaggero. Airline mitigation of propagated delays via
schedule buffers: Theory and empirics. Transportation Research Part E: Logistics and Transportation
Review, 150:102333, 2021.

[18] Christopher Ho-Yen Chin. Disruptions and robustness in air force crew scheduling. Master’s thesis, MIT,
2021.

[19] MohammadReza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, and Martin Takác. Deep reinforcement
learning for solving the vehicle routing problem. CoRR, abs/1802.04240, 2018.

[20] Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle routing
problems. In International Conference on Learning Representations, 2020.

[21] Rongkai Zhang, Anatolii Prokhorchuk, and Justin Dauwels. Deep reinforcement learning for traveling
salesman problem with time windows and rejections. In 2020 International Joint Conference on Neural
Networks (IJCNN), pages 1–8, 2020.

[22] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuristics for
solving the travelling salesman problem. CoRR, abs/1912.05784, 2019.

[23] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems!, 2019.

[24] Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-SAT: An unsupervised
differentiable approach. In International Conference on Learning Representations, 2019.

[25] Emre Yolcu and Barnabas Poczos. Learning local search heuristics for boolean satisfiability. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

[26] Tiago Salgado de Magalhães Taveira-Gomes. Reinforcement learning for primary care appointment
scheduling. Master’s thesis, University of Porto, 2017.

[27] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
CoRR, abs/1602.01783, 2016.

[28] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. Resource management with
deep reinforcement learning. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks,
HotNets ’16, page 50–56, New York, NY, USA, 2016. Association for Computing Machinery.

11



[29] Weijia Chen, Yuedong Xu, and Xiaofeng Wu. Deep reinforcement learning for multi-resource multi-
machine job scheduling. CoRR, abs/1711.07440, 2017.

[30] Sandeep Chinchali, Pan Hu, Tianshu Chu, Manu Sharma, Manu Bansal, Rakesh Misra, Marco Pavone, and
Sachin Katti. Cellular network traffic scheduling with deep reinforcement learning. Proceedings of the
AAAI Conference on Artificial Intelligence, 32(1), Apr. 2018.

[31] Martin L. Puterman. Markov Decision Processes. Wiley, 1994.

[32] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra Addanki,
Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yujia Li, Oriol Vinyals,
and Yori Zwols. Solving mixed integer programs using neural networks, 2021.

[33] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

[34] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks,
2017.

[35] Jeffrey Ichnowski, Paras Jain, Bartolomeo Stellato, Goran Banjac, Michael Luo, Francesco Borrelli,
Joseph E. Gonzalez, Ion Stoica, and Ken Goldberg. Accelerating quadratic optimization with reinforcement
learning. CoRR, abs/2107.10847, 2021.

[36] JP Arabeyre, J Fearnley, FC Steiger, and W Teather. The airline crew scheduling problem: A survey.
Transportation Science, 3(2):140–163, 1969.

[37] Balaji Gopalakrishnan and Ellis L Johnson. Airline crew scheduling: State-of-the-art. Annals of Operations
Research, 140(1):305–337, 2005.

[38] Todd E Combs and James T Moore. A hybrid tabu search/set partitioning approach to tanker crew
scheduling. Military Operations Research, pages 43–56, 2004.

[39] Sergey Shebalov and Diego Klabjan. Robust airline crew pairing: Move-up crews. Transportation science,
40(3):300–312, 2006.

[40] Bernd Waschneck, André Reichstaller, Lenz Belzner, Thomas Altenmüller, Thomas Bauernhansl, Alexan-
der Knapp, and Andreas Kyek. Optimization of global production scheduling with deep reinforcement
learning. Procedia CIRP, 72:1264–1269, 2018. 51st CIRP Conference on Manufacturing Systems.

[41] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

[42] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

[43] Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[45] Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler, and Alejandro Cosimo. Parallel distributed computing
using python. Advances in Water Resources, 34(9):1124–1139, 2011. New Computational Methods and
Software Tools.

[46] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.

[47] Albert Reuther, Jeremy Kepner, Chansup Byun, Siddharth Samsi, William Arcand, David Bestor, Bill
Bergeron, Vijay Gadepally, Michael Houle, Matthew Hubbell, Michael Jones, Anna Klein, Lauren
Milechin, Julia Mullen, Andrew Prout, Antonio Rosa, Charles Yee, and Peter Michaleas. Interactive
supercomputing on 40,000 cores for machine learning and data analysis. In 2018 IEEE High Performance
extreme Computing Conference (HPEC), pages 1–6. IEEE, 2018.

12



A Technical Appendix

A.1 Move-up Crews

During our experimentation, we considered another factor that can lead to more robust schedules,
move-up crews [39]. We found that move-up crews, even when optimally scheduled, did not create
particularly robust schedules, but we include our experimental results here for reference. For the
sake of clarity, because we dealt with individual pilots rather than crews, we will depart from the
literature and use the term move-up pilot rather than move-up crew. A move-up pilot is someone who,
by nature of their qualification and one of their scheduled flights, is readily available to move up to
another flight should someone on that flight become unavailable, perhaps due to a delayed flight.

A.1.1 IP Formulation

We created an IP to increase move-up pilots in our schedules. We first define a threshold, Tmove, for
how far out we should look for move-up pilots. Now, we give a more formal definition of a move-up
pilot: pilot j ∈ I , assigned to flight g ∈ F , is a move-up pilot for slot s ∈ Sf on flight f ∈ F if and
only if all of the following conditions hold:

1. f 6= g

2. Flight g starts at the same time as or later than flight f , and no later than Tmove days after f
starts.

3. Flight g ends at the same time as or later than flight f .
4. Pilot j is not on leave that overlaps with f.
5. Pilot j is not scheduled to any flights that start before f and overlap with f .
6. Pilot j is qualified for slot s.

Using constraints, we define the binary decision variable Mjg,fs to be 1 if pilot j assigned to flight
g is a move-up pilot for slot s on flight f . We then use additional variables to build an objective
function to maximize the number of move-up pilots in our final schedule. We can achieve this with
the following objective function:

max
∑
i∈I

∑
f,g∈F×F

∑
s∈Sf

Mjg,fs (4)

A.1.2 RL Training

To train an RL scheduler to optimize for move-up pilots, we followed the same experimental procedure
for the buffer-optimized RL scheduler, but we changed the reward function. For move-up pilots, we
give a reward of m+1 whenever our agent assigns pilot j to a slot on flight g, where m is the number
slots on other flights that pilot j can serve as a move-up pilot for. We use a maximum move-up time
(like Tmove) of 2 days. We did not do so out of concern for program run time; on a practical level,
moving a pilot to a flight any more than 2 days earlier would cause a significant burden on the pilot
rather than supply the convenient schedule alleviation that move-up pilots are supposed to provide.
Just like the reward function for buffers, we include a -10 penalty for incomplete schedules and a +25
reward for complete schedules. We trained 15 total neural networks with the move-up pilot reward
structure, using 5 different random seeds and schedule densities of 1, 2, and 3.

A.1.3 Model Selection

We followed the same procedure as the buffer-rewarded networks to select the best network and
n value to use for our weight extraction method. We used n values of 0, 2, 4, and 8. We used
this procedure to obtain r, the ratio of average disruptions in the baseline IP schedule to average
disruptions in the NICE schedule with the chosen parameters. r < 1 indicates that the NICE schedule
had fewer disruptions on average. The best median r value was 0.46, with a range of 0.38 (0.25
to 0.63), produced with a scheduling density of 2 and an n value of 2. Two networks with these
parameters and different seed values produced the median value, so we picked one arbitrarily. We
used this model in our subsequent experiments.

13



The range across seeds for our move-up-rewarded NICE scheduler (0.38) was notably higher than the
range for our best buffer-rewarded scheduling method, which was 0.08. Like the buffer-rewarded
schedulers, the n/density combinations also had fairly stable performance across random seeds. The
3 highest ranges across random seeds were 0.88, 0.69, and 0.68. Similar to the buffer-rewarded
schedulers, the 2 highest ranges were produced by the “blank slate” weight extraction method (n = 0).

% Flights Number of Disruptions Significance of Difference
(p-value)

Delayed NICE Baseline IP RL Buffer IP NICE- NICE- NICE-
Baseline RL Buffer

25 0.63± 0.93 0.61± 1.07 32.6± 7.42 0.33± 0.63 .88 < .01 < .01
50 1.05± 1.13 1.16± 1.55 27.6± 7.24 0.68± 0.90 .51 < .01 < .01
75 1.19± 1.25 1.13± 1.73 23.9± 6.44 0.74± 1.04 .73 < .01 < .01
100 1.11± 1.14 1.06± 1.50 19.1± 6.47 0.65± 0.88 .76 < .01 < .01

Table 3: Average and standard deviation of disruptions across scheduling methods when flights are
delayed (lower the better). Scheduling density of 1. The NICE and RL schedulers used the move-up
reward function in their underlying neural network.

A.1.4 Baseline Scheduling Performance

Using the selected model and n value, we ran the same disruption scenario as the buffer-rewarded
NICE scheduler over 100 iterations. We compared the NICE scheduler against the baseline IP
scheduler, the RL scheduler with the same underlying neural network, and the move-up IP scheduler
with a Tmove value of 2. The results are shown in Table 3.

A.1.5 Discussion

Based on our results, the move-up IP scheduler produced more robust schedules than any of the other
methods, but it did not perform as strongly as the buffer IP scheduler, which entirely eliminated
schedule disruptions across all percentages of flights delayed in our previous experiment. This
weakness likely explains the performance of the NICE scheduler based on the move-up reward
function, which showed no significant difference in schedule disruptions compared to the baseline IP
scheduler. Because of the relative inefficacy of increasing the number of move-up pilots in producing
robust schedules, we decided to focus our efforts on using buffers to reduce disruptions in our main
work.

14


	Introduction
	Background and Related Work
	Learning-Based Approaches to Scheduling
	Knowledge Distillation


	Approach
	Crew Scheduling Problem
	Baseline Integer Program Formulation
	Buffer Formulation
	Reinforcement Learning Formulation
	NICE
	Extracting Probability Weights
	Incorporating Robustness

	Experiments
	Scheduling Parameter Selection
	Baseline Scheduling Performance
	Highly-Constrained Scheduling Scenarios

	Discussion
	Conclusions and Future Work

	Technical Appendix
	Move-up Crews
	IP Formulation
	RL Training
	Model Selection
	Baseline Scheduling Performance
	Discussion



