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Decentralized
Execution Scalability

Efficiency in
training sample

complexity

Key Features Expected from MARL Algorithms



Motivation: Scalability

Scalability

• MARL algorithms should work 
in scenarios with a large 
number of agents
• Preferably be agnostic to 

number of agents in the 
environment
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Motivation: Decentralized Execution

Decentralized
Execution

• Each agent should be able to 
take decisions for itself
• Should not depend on a 

centralized controller
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Motivation: Training Time

Efficiency in
training sample

complexity

• MARL algorithms need a lot 
of training samples because 
of various issues like non-
stationarity, partial 
observability, etc.
• The amount of training 

required increases as the 
environment complexity 
increases
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Motivation: Prior Approaches
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Motivating Experiment
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𝑛 < 𝑁



Motivating Experiment
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• In practice, we just have 
local information about the 
neighborhood
• And naïve concatenation 
of neighborhood 
information doesn’t work



Motivating Experiment
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Method
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Inter-agent edges are bidirectional 
(communication edges)



Method
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Agent and non-agent edges are unidirectional 
(sensing edges)



Method
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Experiments: Environments
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Target Coverage Formation Line Formation



Experiments: Sample complexity
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Experiments: 
Scalability
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n=3 n=7 n=10

m=3

Reward/agent ↑ 63.21 63.25 62.87

Avg. completion time ↓ 0.39 0.40 0.40

Avg. #collisions/agent  ↓ 0.40 0.46 0.49

Completion rate↑ 100% 100% 99%

m=7

Reward/agent↑ 61.16 62.23 61.32

Avg. completion time ↓ 0.38 0.40 0.40

Avg. #collisions/agent  ↓ 0.74 0.66 0.70

Completion rate ↑ 100% 100% 100%

m=10

Reward/agent ↑ 58.59 58.23 58.67

Avg. completion time ↓ 0.38 0.40 0.39

Avg. #collisions/agent  ↓ 0.95 0.88 0.87

Completion rate ↑ 100% 99% 100%

m=15

Reward/agent ↑ 53.19 53.46 54.21

Avg. completion time ↓ 0.39 0.40 0.40

Avg. #collisions/agent  ↓ 1.28 1.21 1.20

Completion rate ↑ 100% 99% 99%

TrainingTesting

↑ - higher better
↓ - lower better



Experiments: Other environments

InforMARL 27

Task environment m Metric RMAPPO 
(global info)

InforMARL
(local info)

Coverage

m=3
Avg. completion time ↓ 0.34 0.36

Completion rate ↑ 100% 100%

m=7
Avg. completion time ↓ 0.42 0.43

Completion rate ↑ 100% 99%

Formation
m=3

Avg. completion time ↓ 0.31 0.30

Completion rate ↑ 100% 100%

m=7
Avg. completion time ↓ 0.47 0.43

Completion rate ↑ 100% 100%

Line
m=3

Avg. completion time ↓ 0.24 0.21

Completion rate ↑ 100% 100%

m=7
Avg. completion time ↓ 0.38 0.36

Completion rate ↑ 100% 100%

↑ - higher better
↓ - lower better



Effect of Sensing Radius

• Vary the sensing radius for 
InforMARL
• Diminishing returns in 

performance from increasing 
sensing radius
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Conclusions

• InforMARL uses a graph neural network (GNN)-based 
architecture for scalable multi-agent RL in a decentralized 
fashion.
• InforMARL is transferable to scenarios with a different number 

of entities in the environment than what it was trained on.
• InforMARL has better sample complexity than most other 

standard MARL algorithms with global observations
• Add strict safety constraints for guaranteeing no collisions
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Thank You

Questions we couldn’t get to?
Ideas to collaborate?

Drop me an email at sidnayak@mit.edu
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