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Abstract

We consider the problem of multi-agent navigation and collision avoidance when
observations are limited to the local neighborhood of each agent. We propose
InforMARL, a novel architecture for multi-agent reinforcement learning (MARL)
which uses local information intelligently to compute paths for all the agents in a
decentralized manner. Specifically, InforMARL aggregates information about the
local neighborhood of agents for both the actor and the critic using a graph neural
network and can be used in conjunction with any standard MARL algorithm. We
show that (1) in training, InforMARL has better sample efficiency and performance
than baseline approaches, despite using less information, and (2) in testing, it scales
well to environments with arbitrary numbers of agents and obstacles.

1 Introduction

Reinforcement Learning (RL) has seen wide-ranging successes recently in high-dimensional robot
control [} 2], solving physics-based control problems [3]], playing Go [4], Chess [5] and Atari video
games [6l [7]], etc. However, challenges remain in many real-world applications in which the tasks
cannot be handled by a single agent, e.g., multi-player games, search-and-rescue drone missions,
etc. [8]. In such cases, multiple agents may need to work together and share information in order to
accomplish the task [9]]. Naive extensions of single-agent RL algorithms to multi-agent settings do not
work well because of the non-stationarity in the environment, i.e. the actions of one agent affect the
actions of others [[10, [11]]. Furthermore, tasks may require cooperation among the agents. Classical
approaches to optimal planning may (1) be computationally intractable, especially for real-time
applications, and (2) be unable to account for complex interactions and shared objectives between
multiple agents. The ability of RL to learn by trial-and-error makes it well-suited for problems
in which optimization-based methods are not effective. In particular, multi-agent reinforcement
learning (MARL) approaches may be suitable in these situations due to their fast run-times and
superior performance, and their ability to model shared goals between agents using appropriate
reward structures.

In this paper, we focus on the multi-agent navigation and collision avoidance problem, where there
are N agents navigating to their respective goals in a 2D environment with static and/or dynamic
obstacles. The agents are assumed to be collaborative, i.e. the rewards are shared across all agents.
We assume that an agent can only sense the presence of obstacles or other agents within a certain
limited radius r. The overarching objective is for all the agents to reach their goals in the shortest
time possible, while avoiding collisions with other agents and obstacles. This problem setting is
quite general and arises in many contexts, e.g., search-and-rescue robot teams [12]], environmental
monitoring [13]], and drone delivery systems [[14,[1516].
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MARL-based techniques have achieved significant successes in recent times, e.g., DeepMind’s
AlphaStar surpassing professional level players in StarCraft II [17], OpenAl Five defeating the
world-champion in Dota II [18]], etc. The performance of many of these MARL algorithms depends
on the amount of information included in the state given as input to the neural networks [19]. In many
practical multi-agent scenarios, each agent aims to share as little information as possible to accomplish
the task at hand. This structure naturally arises in many multi-agent navigation settings, where agents
may have a desired end goal but do not want to share their information due to communication
constraints or proprietary concerns [20,21]]. These scenarios result in a decentralized structure, as
agents only have locally available information about the overall system’s state. In this paper, we
focus on the question: “Can we train scalable multi-agent reinforcement learning policies that use
limited local information about the environment to perform collision-free navigation effectively?"

We propose InforMARL, an approach for solving the multi-agent navigation problem using graph-
reinforcement learning. The main features of our approach are that it: (1) uses a graph representation
of the navigation environment which enables local information-sharing across the edges of the graph;
(2) transfers well to different numbers of agents; and (3) achieves better sample complexity in
training compared to prior approaches by aggregating relevant local information from neighbors in
the underlying graph.

More broadly, our work (1) demonstrates that graphs provide a valuable abstraction for multi-agent
navigation environments; (2) highlights that more information (i.e., global information as states) may
not necessarily improve performance, and can, in fact, overwhelm the RL agent networks and lead to
increased sample complexity; and (3) shows how graph architectures can identify the most valuable
information for navigation from local observations to improve performance and scalability.

The rest of this paper is organized as follows. In Section 2] we briefly summarize recent developments
in MARL under different settings. In Section 3] we describe InforMARL, our method for multi-agent
navigation in settings with limited observability and communication. In Section i} we show the
effectiveness of InforMARL in learning policies for navigation by comparing its performance to
other baseline algorithms. We also perform experiments on transferring InforMARL to scenarios
with a different number of entities in the environment. Finally, in Section[5] we discuss the main
conclusions of this paper and describe promising directions for future work.

2 Related Work

In this section, we discuss prior approaches to scaling MARL algorithms, as well as some recent
work on information-sharing between agents in multi-agent systems.

2.1 Scaling MARL

Research on scaling MARL algorithms has broadly followed two main themes: (1) decentralized
execution, and (2) transferring learning between scenarios.

Decentralized MARL: A popular approach to improve scaling is the centralized-training-
decentralized-execution (CTDE) framework. Typically, CTDE frameworks utilize actor-critic meth-
ods [22], where the training step uses a centralized critic that incorporates global information from
all actors. However, during execution, the agents use their own actor networks to select their actions
in a decentralized manner to improve scalability. MADDPG [23] builds upon DDPG [[1] by learning
a centralized critic that is provided the joint state and actions of all agents. MATD3 [24] uses a
double-centralized critic model, which helps reduce the over-estimation bias. In [19], the authors
show the effectiveness of PPO in several standard multi-agent environments. In value-based methods,
VDN [25]] decomposes a centralized value function to a sum of individual agent-specific functions.
Q-Mix [26]] improves upon this by imposing a monotonicity requirement on agents’ individual value
functions and using a learnable mixing of the individual functions instead of only summing them as
done in VDN. These MARL algorithms perform well in the navigation environment when they have
access to information about the positions of all entities in the environment. But, as we demonstrate in
this work, they fail to learn when that information is restricted to just local neighborhoods around the
agents.

Transferability in MARL: It is desirable to have MARL formulations where the number of
agents/entities in the environment doesn’t hinder the performance of the model. Most of the previous



works using MARL for the navigation task require concatenation of observations of other entities
in the environment to be able to learn meaningful policies. As the neural network size depends on
the state input dimensions used while training, the learned policy fails to work in scenarios with a
different number of entities in the environment. With the recent success of graph neural networks,
many recent works have focused on leveraging the inherent graph structure present in multi-agent
problems and tackling the issue of transferability. Zhou et al. [27] create a neighborhood graph
according to how close the entities are to each other and use imitation learning to imitate a greedy
behavior for the target-coverage problem [28, [29]. Similarly, Khan et al. [30] use graph neural
networks with vanilla policy gradient [31] for the formation flying task [32}[33]]. They show that
dynamic graphs have worse performance than static graphs due to the large number of possible graphs
the model has to learn. At the beginning of each episode, their model determines the connectivity
of the agents with each other and uses the same graph over the whole episode. This works well for
the formation flying task as the graph structure does not change much if the agents fly in the same
formation over an episode.

DGN [34] combines a graph convolutional neural network [35]] architecture with multi-head attention
[36] for a variety of multi-agent environments, including 2D coverage and tracking. The DGN
architecture assumes that each agent communicates with its three closest neighbors. Communicating
with the three closest agents leads to a graph that is always connected. However, the three-agent
connectivity assumption is highly restrictive in real life applications, as communication is generally
restricted by mutual separation due to hardware constraints.

We use a distance-based agent-entity graph similar to Entity-Message Passing (EMP) [37]. However,
the EMP architecture assumes that the agents have access to the positions of all entities in the
environment at the beginning of the episode, which is not possible in the navigation setting where
there are occluded static or dynamic obstacles. By contrast, our model does not require information
on the positions of all entities at the beginning of the episode.

2.2 Information Sharing for MARL

For various cooperative tasks where explicit coordination is required to solve the task, enabling
communication to share information across the agents helps with the performance. In CommNet [38],
the authors introduce a model to learn a differentiable communication protocol between multiple
agents. However, this communication does not explicitly model the interactions between the agents
and rather used an averaged state of all the neighboring agents. VAIN [39] improves upon CommNet
by using an exponential kernel-based attention to choose which specific messages from other agents
to attend to. Similarly, ATOC [40]] and TarMAC [41] use an attention mechanism for communication
among agents but without any restrictions on which agent can communicate with which others,
leading to a centralized setting during execution. GAXNET [42] also uses an attention mechanism
[36], but additionally allows for the exchanging of attention weights with other agents to reduce the
attention mismatch between them. While they show that their model works well for the navigation
task, their formulation requires the maximum number of agents in the environment to be fixed before
training. Our work also uses an attention mechanism for inter-agent communication. However, we do
not have any message passing between objects in the environment (also referred to as ’entities’) and
agents; instead, the agents themselves do all the computation with local information of the entities’
states.

3 Description of InforMARL

Our MARL framework for navigation, InforMARL, consists of four modules, as shown in Figure
We describe each in detail below.

3.1 Environment

Every object in the environment (also known as an ‘entity’) is assumed to be either an agent, an
obstacle, or a goal. We define an agent-entity graph with respect to agent ¢ at each time-step
t, as g,ﬁl) € G : (V,E&), where each node v € V is an entity in the environment. The variable
entity_type(j)€ {agent,obstacle, goal} determines the type of entity at node j. There exists
an edge e € £ between an agent and an entity if they are within a ‘sensing radius’ p of each other.
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Figure 1: Overview of InforMARL. (i) Environment: The agents are depicted by green circles, the
goals are depicted by red rectangles, and the unknown obstacles are depicted by gray circles. xﬁqu
represents the aggregated information from the neighborhood, which is the output of the GNN. A
graph is created by connecting entities within the sensing-radius of the agents. (ii) Information Aggre-
gation: Each agent’s observation is concatenated with chgg. The inter-agent edges are bidirectional,
while the edges between agents and non-agent entities are unidirectional. (iii) Graph Information
Aggregation: The aggregated vector from all the agents is averaged to get X,4,. (iv) Actor-Critic:
The concatenated vector [o(¥), xggg] is fed into the actor network to get the action, and X, is
fed into the critic network to get the state-action values. The code for InforMARL is available at:

https://github.com/nsidn98/InforMARL
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The agent-agent edges are bidirectional, whereas the agent-non-agent edges are unidirectional (i.e.
messages can only be passed from the non-agent entity to the agent). In other words, a unidirectional
edge is equivalent to the agent sensing a nearby entity’s state, while a bidirectional edge is equivalent
to a communication channel between agents. This structure is similar to the agent-entity graph
defined in [37], but without the assumption that all agents have access to the positions of all entities
at the beginning of each episode. Note that our formulation also supports cases where disconnected
sub-graphs are formed due to the positioning of the entities in the environment.

The corresponding Decentralized Partially Observable Markov Decision Process (Dec-POMDP)
(43144, /43] is characterized by the tuple (N, S, 0, A, G, P, R, ~), where N is the number of agents,
s € § = RVXD s the state space of the environment and D is the dimension of the state, and
o) = O(s(i)) € R? is the local observation for agent ¢, where d < D is the observation dimension.
a € A is the action space for agent i and the joint action for all N agents is given by A =
(a(l), s aN )). Specifically, a(?) is a one-hot vector of size equal to the number of possible actions.
gD eg (s;1) is the graph network formed by the entities in the environment with respect to agent
i. P(s'|s, A) is the transition probability from s to s’ given the joint action A. R(s, A) is the joint
reward function. v € [0 1) is the discount factor. The MARL training process seeks to find an optimal
policy, II = ( O )) where each agent uses a policy 7T ( )|0( ) parameterized by

6 to determine its actron a® from its local observation o(*) and the graph network g™ that it is a part

of, while optimizing the discounted accumulated reward J(0) = E 4, 5, | > 7 R (s¢, At)] .
¢

Agent i’s local observation o(*) consists of its position and velocity in a global frame of reference and

the relative position of the agent’s goal with respect to its pos1t10n Each node j on the graph ¢(*) has

node features ; = [p?, v/, pE°*7 entity_type ()] where p!, v/, p2°*7 are the relative position,

velocity, and position of the goal of the entity at node j with respect to agent 1, respectively. If node
j corresponds to a (static/dynamic) obstacle or a goal, we set P = p Each edge e;; has an
associated edge feature given by the Euclidean distance between the entities ¢ and j. For processing
the entity_type categorical variable, we experimented with both using an embedding layer [46] and
using one-hot encoding. No significant performance advantage with one method over the other was
found, so we chose to use the embedding layer. Further analysis revealed that the learned embedding
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vectors for entity_type were equidistant from each other when visualized in 2D. This was to be
expected because each of the entity types (agent, obstacle, goal) are equally distinct from another.
Future work could include further refinement of entity_type, e.g., adversarial vs. cooperative
obstacles, static vs. dynamic obstacles, etc.

We adopt a similar reward function as used in multi-agent particle environ_ment (MAPEﬂ [47] where

each agent ¢ gets a reward: ry) = T((illlt s ré?n.t + Té?al » Where r((;iit , 1s the negative of the

(@)

Euclidean distance to the goal, ), ,

(#)
goal,t

= —5 if it collides with any other entity and zero otherwise,
and r = +5 if the agent has reached the goal and zero otherwise. The joint reward function is

defined as R(s¢, A;) = Zfil rt(i), which encourages cooperation among all agents.

3.2 Information Aggregation

To infer information about the local neighborhood around each agent 7, we use a graph neural network
(GNN) with a message passing framework [48]]. Specifically, we use Unified Message Passing Model
(UniMP) [49], a variant of a graph transformer [36} [50] where each layer update is as follows:

:L‘: =Wy -x; + Z OéfL'_’jWQ - Zj, (1)
JEN(4)
where , are the node features in the graph, N’ (7) is the set of nodes which are connected to node 1,

W), are learnable weight matrices and the attention coefficients «; ; are computed via multi-head dot
product attention:

(@)

W -2) (Wy -2+ Ws - e
ai,j:softmax<( 3 @i) (Wa-z;+ ej)>7

NG

where W}, are learnable weight matrices, e;; are edge features for the edge connecting nodes 7 and j,
and c is the output dimension for that specific layer.

The attention mechanism allows the agents to selectively prioritize messages coming from their
neighbors according to their importance. We use multiple layers of this message-passing so that
information can be propagated between agents that are higher-order neighbors with each other. For
each agent ¢, this module aggregates information from the neighboring nodes in the graph into a
fixed-sized vector zggg. The concatenated vector [0(", xggg] is given as the input to the actor network.
This architecture allows InforMARL to dynamically adapt to a changing number of entities in the

environment while remaining invariant to the permutation of the observed entities.

3.3 Graph Information Aggregation

While training the model in the CTDE setting, the critic generally gets the state-action pairs of all
individual agents in the environment as a concatenated vector. To make the training transferable to
a variable number of agents and to aid with curriculum learning [51} 152, 53], we replace this con-
catenation with a graph information aggregation module. This module is similar to the ‘Information
Aggregation’ one in which a GNN aggregates information from the agent’s neighbors. A global mean
pooling operator is applied to aggregate the updated node features in the graph:

1
Xags = 37 D Tids 3
i=1

Note that X4, is a vector of fixed size independent of the number of agents, which is not the case
when concatenating the state action-pairs of all individual agents. This vector is then given as input
to the critic network.

3.4 Actor-Critic Networks

The actor and critic networks can be either a multi-layer perceptron (MLP) or a recurrent neural
network (RNN) [154]], using either LSTMs [55] or GRUs [56]. Our proposed information aggregation

"https://github.com/openai/multiagent-particle-envs
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method can be used in conjunction with any standard MARL algorithm (e.g., MADDPG [23], MATD3
[24], MAPPO [19], QMIX [26], VDN [23]], etc.).

4 Experiments

Task description: We evaluate our proposed model on the navigation task by modifying the MAPE
[47]. In this environment, agents move around in a 2D space following a double integrator dynamics
model [S7]. The action space for each agent is discretized such that it can control unit acceleration
and deceleration in the z- and y- directions. The navigation task differs from the target-coverage
[28.129] problem in that each agent navigates to its own specific goal rather than any of the available
goals. Agents start at random locations at the beginning of each episode; the corresponding goals are
also randomly distributed. Static obstacles are placed randomly in the environment in each episode.
The overarching objective is for every agent to reach its corresponding goal without colliding with
any other entity.

Implementation specifications: We chose to use MAPPO [19] as the base MARL algorithm for Infor-
MARL because it was found to be the best performing of the standard MARL baselines in the 3 agent-3
obstacle scenario. We implemented InforMARL by modifying the official codebase for MAPPO [19]
in PyTorch. The code for our experiments can be found at https://github.com/nsidn98/InforMARL!.
The codebase links to our baseline implementations can be found in Appendix [Al We used the
official implementations for most of the baselines considered in Section 4.2 We prefix the algo-
rithm name with ‘R’ to denote the recurrent neural network (RNN) version of the algorithm (e.g.
MAPPO-RMAPPO, MADDPG-RMADDPG, etc.). We use the same hyperparameters as used in
the experiments for MAPPO, and do not perform parameter tuning on InforMARL for any of the
MAPPO-based parameters. The hyperparameters used in our experiments can be found in Appendix
We train the models with five different random seeds, and compute the means and standard
deviations of the rewards.

Amount of information available to agents: The amount of information available to each agent
determines whether or not the agent can learn a meaningful policy. Although having more information
is generally correlated to better performance, it does not necessarily scale well with the number of
agents. Prior works [[19} 23] have typically used a naive concatenation of the states of all agents or
entities in the environment fed into a neural network. Such an approach scales poorly (the network
input size is determined by the number of agents) and does not transfer well to scenarios with a
different number of agents than the training environment. We illustrate the dependence of the learned

policies on the amount of information available to agents by defining three information modes:
« Local: Tn the local information mode, o) = [p(), v pl® ] where p(*) and v(*) are the

> Yloc ’ » Fgoal

position and velocity of agent ¢ in a global frame, and pgo)al is the position of the goal relative
to the agent’s position. InforMARL uses this information mode.

* Global: Here, ogllb = [p®, v, pgo)ap p% 1, where p’)  comprises of the relative
positions of all the other entities in the environment. The scenarios defined in the MAPE
(and consequently, other approaches that use MAPE) use this type of information mode
unless explicitly stated otherwise.

* Neighborhood: In this information mode, agent ¢ observes or(fb) d
where p((ft)her comprises of the relative positions of all other entities which are within a
distance nbd-dist of the agent. The maximum number of entities within the neighborhood
is denoted max-nbd-entities, and so the dimension of the observation vector is fixed. If
there are fewer than max-nbd-entities within a distance nbd-dist of the agent, we pad
this vector with zeros.

(%) (1) ]

= [p(l>’ v(Z) ’ pgoal7pother

4.1 A Motivating Experiment

Using local or neighborhood information modes is preferable, since they are transferable to scenarios
with a different number of entities in the environment. By contrast, the global information mode is
not transferable to other scenarios. Figure [2]shows the rewards obtained during training using the
three information modes. We use RMAPPO as the base MARL algorithm for the 3 agent-3 obstacle
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scenario. We chose RMAPPO because it was found to be the best-performing MARL algorithm in
the global information mode.

Comparing different information modes with RMAPPO

150 A

100 A

50 A

Reward

= local

nbd_1
nbd_3
nbd_5
global

—50 4

-100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Training Steps 1e6

Figure 2: RMAPPO with the local, neighborhood (with 1, 3, and 5 max-nbd-entities), and global
information given as states. The plots show the rewards during training for the 3 agent-3 obstacle
navigation scenario. The means and standard deviations of the rewards over training with five random
seeds are shown. Comparing the global information mode to the others, we see that merely providing
local information and a naive concatenation of neighborhood information is not sufficient to learn an
optimal policy.

We see in Figure 2] that the policy learned with global information is better than the policies learned
with local or neighborhood information. This is because it has the information necessary to take
optimal actions. In the ‘nbd_5’ scenario, if all entities are within the nbd_dist ball, then ol(fg =
ogllb, since there are only five entities in the environment apart from the agent itself. Although
the ‘nbd_5’ scenario is almost similar to the global information mode, the performances are not
similar: the global information mode achieves much higher rewards. This behavior is because
the observation 0; 1,4 can change temporally from having information about an entity when it lies
within a nbd_dist ball of the agent, and then getting padded with zeros when it is out of the ball.
This inconsistency in the amount of information accessible to the agent at every time step causes
a significant performance difference between the policies learned with global and neighborhood
information modes. This experiment motivates us to find a way in which more information can be
leveraged (similar to the global case), but in a manner that does not suffer from the performance
shortcomings of the neighborhood or local information modes.

4.2 Comparing InforMARL to Other Baselines

As shown in Section [T} using local information modes or naively concatenating neighborhood
entity information is not sufficient to learn optimal policies. In this section, we demonstrate that
InforMARL can effectively learn policies for navigation given local information. We then compare
its performance in this problem setting with prior deep MARL approaches. Specifically, we consider
the following classes of methods as baselines for comparison.

1. Graph Policy Gradient (GPG) [30]: GPG uses a graph convolutional neural network
(GCN) [35] to parameterize policies for agents. The authors use the policy gradient method
[31] as the base MARL algorithm. We perform experiments with both dynamic and static
graphs. Note: It was shown in [30|] that using a static graph constructed at the beginning of
the episode was better than using a dynamic graph.

2. Graph Convolutional Reinforcement Learning (DGN, DGN+ATOC) [40,34]: Similar to
GPG, these methods use GCNs to capture interactions between the agents in the environment.
A key difference between InforMARL and these two methods (GPG and DGN) is that while
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Figure 3: Comparison of the training performance of InforMARL with the best-performing baselines
using global and local information. The means and standard deviations of the rewards over training
with five random seeds are shown. InforMARL significantly outperforms most baseline algorithms.
Although RMAPPO has similar performance, it requires global information. Appendix [D]presents a
complete comparison to more baselines.

the latter two approaches consider only agents in their message-passing graph, InforMARL
also includes other (non-agent) entities in the graph.

3. Entity Message Passing (EMP) [37]: Similar to InforMARL, EMP uses an agent-entity
graph. However, in contrast to InforMARL, EMP assumes that agents know the positions of
all entities in the graphs (i.e., global information) at the beginning of the episode.

4. Other standard MARL Algorithms: Finally, we compare InforMARL with standard
MARL algorithms, namely, MADDPG [23]], MATD3 [24], QMIX [26], VDN [25] and
MAPPO [19]. In each case, we also consider the recurrent neural network versions. We
focus on results for the global information modes, since our experiments found that these
methods did not learn well with local information.

Figure [3| shows the training performance of InforMARL and the best-performing of the baselines
mentioned above. For ease of visualization, we plot only the four best-performing methods with
global and local information, respectively. A complete comparison plot showing all the baseline
methods can be found in Appendix [D] Each line corresponds to the mean and standard deviation over
five random seeds. For each method, we consider scenarios with N = 3, N = 7, and N = 10 agents
in the environment.

Figure 3] illustrates that only using RMAPPO (i.e. the RNN version of MAPPO) or InforMARL are
agents able to learn to navigate and get to their goals. However, unlike RMAPPO which requires
global information, InforMARL is able to achieve this with just local information. Furthermore, we
find that InforMARL requires a similar number of training steps as RMAPPO, despite having access
to much less information.

We present the following metrics in Table|l} The results represent an average over 100 test episodes.

1. The total rewards obtained by the agents during an episode using the reward function defined
in Section[3.1] A higher value corresponds to better performance.

2. The fraction of an episode that the agents take on average to get to the goal, denoted 7. If
an agent does not reach its goal, then 7" is set to be 1 (lower is better).

3. Percent of episodes in which all agents are able to get to their goals, denoted S% (higher is
better).

4. The total number of collisions (both agent-agent + agent-obstacle) that agents had in an
episode, denoted # col. The lower this metric, the better the performance of the algorithm.

Although having a smaller number of collisions is better, the policies of some of the baseline
algorithms do not significantly move the agents from their initial position after training and hence do



Inform- N=3 N=7 N =10

Algorithm ritggé Reward T | #col | S% Reward T #col | S% || Reward T #col | S%
MADDPG [23] Global —100.73 | 0.97 | 1.60 5 —206.07 | 0.98 6.01 0 -210.43 | 1.00 9.26 0
RMADDPG Global 10.73 | 0.75 | 3.20 | 23 —122.069 | 0.95 9.75 3 -127.98 | 1.00 | 14.89 0
MATD3 [24] Global —90.31 | 0.98 | 1.11 5 —169.08 | 0.99 1.98 1 -173.20 | 1.00 3.50 0
RMATD3 Global 105.49 | 0.51 | 3.07 | 67 —128.93 | 0.96 7.40 6 -131.72 | 0.99 | 11.14 1
QMIX [26]] Global —54.24 | 0.84 | 2.06 7 —288.81 | 0.97 | 17.05 0 -273.46 | 1.00 | 25.31 0
RQMIX Global 19.21 | 0.77 | 1.42 | 28 —83.41 | 0.85 11.5 12 -76.98 | 0.96 | 17.04 2
VDN [25] Global 18.86 | 0.67 | 2.29 | 27 39.87 | 0.64 858 | 23 4323 | 0.73 | 12.54 | 19
RVDN Global 64.04 | 0.62 | 1.05 | 45 140.94 | 0.62 6.60 | 47 157.63 | 0.64 | 10.00 | 43
RMAPPO [19] || Global || 173.13 | 0.41 | 1.47 | 9 327.39 | 044 | 8.64 | 88 || 366.81 | 0.44 | 13.21 | 79 |
GPG (static) [30] Local —67.03 | 0.96 | 1.47 7 —180.14 | 0.99 6.41 1 J182.57 | 1.00 9.44 0
GPG (dynamic) Local —46.27 | 0.87 | 0.43 8 —165.91 | 1.00 3.20 3 -173.53 | 1.00 4.68 0
DGN [34] Local 32.94 | 0.59 | 2.57 | 32 —232.32 | 0.97 5.39 0 -243.45 | 1.00 8.62 0
DGN + ATOC Local 67.70 | 0.66 | 1.49 | 35 —189.61 | 0.97 2.20 0 -201.01 | 1.00 4.06 0
EMP [37] Local —83.96 | 0.98 | 1.35 6 —211.90 | 0.98 5.91 0 -209.90 | 1.00 9.22 0
TnforMARL Tocal 205.24 | 0.38 | 1.45 | 100 399.01 | 0.37 | 697 | 100 || 429.14 | 0.39 | 10.50 | 100

Table 1: Comparison of InforMARL with other baseline methods, for scenarios with 3, 7, and 10
agents in the environment. The results presented represent the average of 100 test episodes. The
following metrics are compared: (a) Total reward obtained in an episode by all the agents (higher is
better). (b) Fraction of episode taken by the agents to reach the goal, T' (lower is better). (c) The total
number of collisions the agents had in the episode, # col (lower is better). (d) Percent of episodes in
which all agents are able to get to their goals, S% (higher is better). The best-performing methods
that use global information (RMAPPO) and local information (InforMARL) are highlighted. As
noted in Section @ the metrics # col and S should be considered on balance.

not get to the goal. This leads to them having a lower number of collisions. Hence, this metric should
be judged with the success rate in context.

The graph-based methods, namely GPG (static and dynamic), DGN (+ATOC), and EMP do not
learn effectively with local information modes. Although both GPG and DGN use GCNs, they do

not perform as well as InforMARL because they use only agent-agent and not agent-entity graphs.

The lack of information about non-agent entities means that agents cannot maneuver through the
environment to avoid collisions.

In contrast to the results showed in [30], our results show that the dynamic graph version of GPG
is slightly better than the static graph one. A possible reason for this discrepancy is that the fixed
formation environment considered in [30] is more amenable to the use of static graphs than the
navigation environment. EMP, which uses a similar agent-entity graph as ours, fails to learn because
of the strong assumption of having access to the positions of all entities in the environment at the
beginning of the episode. The original implementation of EMP (and the associated environments)
included information about all the entities other than agents in the observation vector.

4.3 Scalability of InforMARL

To evaluate the scalability of InforMARL with minimum information, we perform experiments by

testing the models in scenarios with a different number of agents from those that they were trained on.

Table 2] shows the results of testing InforMARL trained on n agents and tested on m agents. Each
scenario is tested over 100 episodes. The number of obstacles in the environment is randomly chosen
from (0, 10) at the beginning of the episode. Based on the findings presented in Table|I) , we did not
test the scalability of other methods since they did not perform well in the local information mode, or
could not handle varying numbers of entities in the environment.

We see from Table 2] that InforMARL is able to achieve a success rate of 100% for almost all the
scenarios. Furthermore, with InforMARL, the agents are able to get to their goals within 7" ~ 0.39
of the episode length in all scenarios. The number of collisions per agent increases, which is to



Train
Test n=3 | n=7|n=10
Reward/m || 68.41 | 58.30 | 57.27
3 T 038 | 038 | 039
= @col/m || 0.48 | 0.61 | 0.64
5% 100 | 100 99
Reward/m || 61.16 | 57.00 | 58.32
. T 038 | 037 | 038
= @Fcolim || 1.I5 | 099 | 1.03
5% 100 | 100 100
Reward/m || 58.59 | 53.25 | 52.10
10 T 038 | 038 | 039
- Fcolim || 1.60 | 143 | 1.68
5% 100 99 100
Reward/m || 53.19 | 46.39 | 48.15
s T 039 | 039 | 040
m= Fcol/m || 224 | 2314 | 220
5% 100 99 99

Table 2: Test performance of InforMARL, when trained on scenarios with n agents and tested on
scenarios with m agents in the environment. InforMARL is able to achieve a success rate of nearly
100% while the fraction of episodes taken to reach the goals (7') is almost constant. Note that we
normalize the reward and the number of collisions by m for ease of comparison.

be expected as the environment becomes denser. We believe that this can be remedied by using a
stricter penalty (negative reward) for collisions instead of the —5 penalty used in our experiments.
Alternatively, a more sophisticated approach with control barrier functions for satisfying safety
constraints could be used to provide a formal safety guarantee in the MARL setting [58]].

4.4 Effect of Sensing Radius

We investigate how the performance of InforMARL depends on the sensing radius, namely, how
much information (i.e. over what neighborhood of the ego-agent) an agent has access to. As the
radius increases to a large value, the graph becomes fully connected; as the radius decreases to zero,
the neighborhood information mode converges to the local information mode. As seen in Figure 4}
when learning with a small sensing radius (e.g. p = {0.1,0.2}), the agents are not able to achieve
the same reward as can be achieved with a larger sensing radius (p = {0.5, 1, 2, S}ﬂ We also note
that there are diminishing returns when increasing the sensing radius from p = 0.5 to p = 5. Since
the agents far away from the ego-agent have little influence on its immediate decisions, the extra
information obtained by increasing the sensing radius does not improve performance very much.

4.5 Ablation Study for Graph Information Aggregation Module

The graph information aggregation module allows our method to perform transfer learning to more
complex environments. In this section, we compare models with and without the graph information
aggregation module. In the absence of the graph information aggregation module, the states of
individual agents are concatenated to be given as input to the centralized critic. Figure [5]presents
the results of this ablation study. We find that both models have similar sample complexities and
performance. However, the number of parameters for the critic network with the graph information
aggregation module is much smaller and independent of the number of entities in the environment.

Measurements for p, a distance, are in meters
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Rewards with and without the graph aggregation module
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Training Steps 1e6

Figure 5: Training performance of InforMARL
with, and without, the graph information ag-
gregation module, for a 3-agent scenario. The
two variants have similar sample complexities.
However, the critic network with the graph in-
formation aggregation module has fewer param-
eters than the one without this module.

Figure 4: Diminishing returns in performance
gains from increasing the sensing radius for In-
forMARL. The dashed lines are the reward val-
ues after saturation for RMAPPO in the global
(in green) and local (in red) information modes,
respectively. They are provided for reference.

5 Conclusions and Future Work

We introduced InforMARL, a novel architecture that uses GNNs for scalable multi-agent reinforce-
ment learning. We showed that having just local observations as states is not enough for standard
MARL algorithms to learn meaningful policies. Along with this, we also showed that albeit naively
concatenating state information about all the entities in the environment helps to learn good policies,
they are not transferable to other scenarios with a different number of entities than what it was trained
on. InforMARL is able to learn transferable policies using standard MARL algorithms using just local
observations and an aggregated neighborhood information vector. Furthermore, it has better sample
complexity than other standard MARL algorithms that use global observation. Future work will
include the introduction of more complex (potentially adversarial) dynamic obstacles in the environ-
ment and adding a safety guarantee layer for the actions of the agents to avoid collisions. Additionally,
the use of InforMARL for curriculum learning and transfer learning to different environments is a
topic of ongoing research.
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A Baseline Implementation Sources

We modified the codebases from the official implementations for the GPG, DGN, EMP, and MAPPO
baselines. We also adapted the codebase for MADDPG, MATD3, VDN and QMIX for our experi-
ments which was benchmarked on other standard environments. The links for all these implementa-
tions are listed below.

* GPG: https://github.com/arbaazkhan2/gpg_labeled

* DGN: https://github.com/jiechuanjiang/pytorch_ DGN

¢ EMP: https://github.com/sumitsk/marl_transfer

¢ MAPPO: https://github.com/marlbenchmark/on-policy

* MADDPG, MATD3, QMIX, VDN: https://github.com/marlbenchmark/oft-policy

B Hyperparameters

We performed a hyperparameter search for these algorithms by varying the learning-rates, network
size and a few algorithm specific parameters. We observed that the hyperparameters used in the
original implementation gave the best performance, and used those same values for our experiments
as well.

Table [3]lists the hyperparameters specific to the InforMARL implementation. Here, “‘entity embed-
ding layer dim" and “entity hidden dim" refer to the embedding layer input and output dimension
respectively which is used to process the entity-type variable in the graph. “add self loop" refers
to whether a self-loop should be added while constructing the agent-entity graph. “gnn layer hidden
dim" is the output dimension of each layer in the graph transformer. “num gnn heads" and “num gnn
layers" are the number of heads in the attention layer and number of attention layers used in the graph
transformer. “gnn activation" is the activation function used after each layer in the GNN module.

Hyperparameters Value
entity embedding layer dim 3
entity hidden dim 16
num embedding layer 1
add self loop False
gnn layer hidden dim 16
num gnn heads 3
num gnn layers 2
gnn activation ReLU

Table 3: Hyperparameters used in InforMARL

Tables 4] 5] [6]list the hyperparameters common for the InforMARL, MAPPO, MADDPG, MATD3,
QMIX and VDN implementations. For MADDPG, MATD3, MAPPO, QMIX, VDN and InforMARL,
“batch size” refers to the number of environment steps collected before updating the policy via
gradient descent. “mini batch” refers to the number of mini-batches a batch of data is split into. “gain”
refers to the weight initialization gain of the last network layer for the actor network. “num envs"
refers to the number of parallel roll out threads used to collect state-transition tuples.

C Computational Environment

Our models were trained on a server with 40 Intel Xeon Gold 6248 @ 2.50 GHz processor cores and
2 NVIDIA Volta V100 graphics cards. Our code uses PyTorch [60] version 1.11.0, CUDA version
11.3, and PyTorch Geometric Library [61] version 2.0.4.
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Common Hyperparameters Value
recurrent data chunk length 10

gradient clip norm 10.0

gae lambda 0.95

gamma 0.99

value loss huber loss
huber delta 10.0

batch size num envs X buffer length X num agents
mini batch size batch size / mini-batch
gain 0.01

network initialization Orthogonal
optimizer Adam
optimizer epsilon le-5

weight decay 0

use reward normalization True

use feature normalization True

Table 4: Common Hyperparameters used in MAPPO and InforMARL

Common Hyperparameters Value
gradient clip norm 10.0
random episodes 5
epsilon 1.0 — 0.05
epsilon anneal time 50000 timesteps
train interval 1 episode
gamma 0.99
critic loss mse loss
buffer size 5000 episodes
batch size 32 episodes
optimizer Adam
optimizer eps le-5
weight decay 0
network initialization Orthogonal
use reward normalization True

use feature normalization True

Table 5: Common Hyperparameters used in MADDPG, MATD3, QMIX, VDN
D Full Comparison

We showcase the learning curves of all the baseline algorithms, including MADDPG, RMADDPG,
MATD3, QMIX, VDN, GPG (static), and DGN in Figure @
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Common Hyperparameters

Value

num envs
buffer length

num GRU layers
RNN hidden state dim
fc layer hidden dim
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Table 6: Common Hyperparameters used in MAPPO, MADDPG, MATD3, QMIX, VDN and

InforMARL

3 agents

3 agents
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Reward
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3.0
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GPG (dynamic)

2 3
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—— DGN + ATOC
— EMP
—— InforMARL

Figure 6: A thorough comparison of InforMARL with baselines. The algorithms that use global
information modes are represented with dashed lines and the algorithms that use local information
modes are represented with solid lines. The means and standard deviations of the rewards over
training with five random seeds are shown.
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