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Abstract—Albatrosses are capable of travelling thousands of
kilometres daily with very little fuel supplies. They utilise a
flight strategy called dynamic soaring which helps them to extract
propulsive energy from the horizontal wind shear layers formed
a few metres above the ocean surface. This allows them to fly for
hours or even days without flapping their wings. We investigate
this flight behaviour from a trajectory optimization point of view
and try to emulate these zero-cost trajectories numerically. We
also analyse the variation in these trajectories caused by changing
the wind parameters. Finally we use Linear-Quadratic Regulator
(LQR) control for tracking these trajectories, to account for
errors and noise in the dynamics. The code for reproducing the
experiments in this paper can be found here.

I. INTRODUCTION

Dynamic soaring is a flight maneuver utilised by birds such
as the wandering albatross (Diomedea exulans) to gain energy
by repeatedly crossing the boundaries between wind layers of
different velocities. Such wind layers of different velocities
are generally found close to obstacles and surfaces. Dynamic
soaring is widely used in remote controlled gliders and UAVs
to travel long distances with limited energy consumption
and to achieve high speeds. Therefore, dynamic soaring
has have the potential to improve the energy efficiency of
robotic gliders. An albatross-like glider which utilises the
wind stream gradients could be used to survey oceans with a
virtually infinite range.

The motion of an albatross over long distance is known
to be periodic, and it was our goal through this project to
find and track a periodic trajectory that obeys the strongly
nonlinear and underactuated dynamics of the albatross flight.
Trajectory optimization provides a suitable framework for
this problem. One can use trajectory optimization methods
to find trajectories which have zero energy cost and satisfy
simplified model dynamics of the bird. In this work, we
use direct collocation optimization methods to find these
trajectories under different wind conditions and time periods
of the trajectory cycles.

Optimal trajectories for the full albatross dynamics can
be computed offline, which is important given the highly
nonlinear and underactuated nature of the bird’s dynamics.
Also offline, this nominal trajectory can be linearized and
the gains of a corresponding finite horizon Linear-Quadratic
Regulator (LQR) controller can be computed. Wrapping an
LQR controller around the nominal trajectory allows for

disturbance rejection in the presence of noise. At runtime, it
is only necessary for the algorithm to interpolate between the
pre-computed gains of the finite horizon LQR controller in
order to drive the albatross’s state to the nominal trajectory.
This framework provides a fast, tractable means of controlling
the nonlinear, underactuated dynamics of albatross flight with
zero energy cost.

We discuss about previous works related to dynamic soaring
in Section II. We define the dynamics model for the glider
and the wind profile in Section III. Then we formulate the
trajectory optimization problem as a non-linear program in
Section IV. Following this in Section VI, we discuss about
the usage of LQR Control for stabilising the trajectories about
the nominal paths obtained via trajectory optimization in the
presence of noise and errors within the dynamics of the model.
Section V contains the results for all of our experiments.

II. RELATED WORK

The study of dynamic soaring was first carried out by
Leonardo da Vinci [1] around 400 years before the invention
of the first aircraft by the Wright brothers. But he did not
model dynamic soaring formally with mathematical equations.
Later, Lord Rayleigh [2] modelled the different parts of the
albatross flight pattern and proposed the requirement of a
non-uniform wind by describing a two-layer system with the
two layers moving at different speeds.

Many of the works related to analysing albatross flight
patterns have been focused on the energy management [3]
and the metabolic costs [4] of the albatrosses. These works
have influenced the design of long-endurance fixed-wing
UAVs. Richardson [5] utilises dynamic soaring for marginally
increasing the speed of the glider in each cycle of the periodic
trajectory and making the glider reach up to a record speed
of 780km/h. They also suggest that due to the compressibility
of air at higher speeds, the highest achievable speed of the
gliders will level out at 980km/h.

On the other hand, Bousquet et al. [6] analyse the flight
patterns for different shear thickness for the wind layers.
They model their optimization to find the minimum wind
strength required to sustain the zero-energy cost trajectories.
They evaluate their model for different shear layer thickness
and show that the trajectories vary a lot under these different
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Fig. 1. The sigmoid wind profile and the wind shear layer. The sea-level is
at z = −10, the wind shear boundary at z = 0

conditions specifically when the shear layers are quite thin.
These trajectories are shown to be consistent with GPS
recordings of albatrosses. We base our trajectory optimization
formulation and simplified dynamic model of the albatross
heavily on this work.

III. DYNAMICS

We model a 3-dimensional version of the glider as a point
mass (as commonly used in the dynamic soaring literature).
Specifically we model the dynamics of the glider as defined in
[6]. The state of the glider is denoted by X = (x, y, z, V, ψ, γ)
where x, y, z are the spatial Cartesian coordinates, V is the
albatross airspeed and ψ and γ are the relative air-heading
angle and air-relative flight path angle respectively. The control
inputs are the lift coefficient and roll angle u = [cL, φ].
Additionally, we use a sigmoid wind-profile as W (z) =

W0

1 + exp(−z/δ)
flowing in the y direction, where z is the

altitude. Here W0 is the free stream wind speed at a reference
altitude (z = 10) and δ is the shear layer thickness. As shown
in Fig 1, note that z = 0 is not the sea-level and rather is called
the “wind-shear boundary layer.” The velocity of the wind
should be zero just above the sea-level surface and thus we use
z = −10 as the sea-level surface. As noted in [6], the sigmoid
wind profile is a more robust way to approximate a wide
class of wind-fields. For example, the sigmoid wind model
is equivalent to Rayleigh’s wind model [2] (step function) in
the limit δ → 0

Parameter Value
g 9.8 kg/m2

m 9.5 kg
cD,0 0.01
S 0.65 m2

ρ 1.2 kg/m3

fmax 40
TABLE I

PARAMETER VALUES USED IN THIS WORK

The equations of motion for the glider are:

ẋ = V cos γ cosψ (1)
ẏ = V cos γ sinψ −W (2)
ż = V sin γ (3)

mV̇ = −D −mg sin γ +mẆ cos γ sinψ (4)

mV γ̇ = L cosφ−mg cos γ −mẆ sin γ sinψ (5)

mV ψ̇ cos γ = L sinφ+mẆ cosψ (6)

cD = cD,0 + kc2L (7)

L =
1

2
cLρSV

2 (8)

D =
1

2
cDρSV

2 (9)

The coefficient cD,0 represents the system’s drag when no
lift is generated and the parameter k is the coefficient of
additional drag generated due to the lift. Denoting f ≡ cL/cD,
the glider’s lift-to-drag ratio (or finesse), we can relate k as
k−1 = 4f2maxcD,0. The parameters used for our experiments
are in Table I. The above equations are a simplified point-mass
model of the dynamics of the albatross flights and do not take
into account the aerodynamic slip. In order to increase the
fidelity of the study to the true albatross dynamics, one could
take this slip into account, as it can have significant effects in
the high-speed regime. To do so, one can consider the flat-plate
model equations as defined by Cory and Tedrake [7]. We do
not consider this model in our study, as a first order approx-
imation of the albatross dynamics is sufficient for our study
of nonlinear trajectory optimization, trajectory linearization,
and trajectory stabilization. We leave the inclusion of more
complex dynamic models to future work.

IV. TRAJECTORY OPTIMIZATION

We formulate the trajectory optimization problem in two
different forms:

• Travelling Trajectories: these trajectories are S-shaped
with alternating turn directions.

• Non-travelling (Loitering) Trajectories: these trajectories
are O-shaped with a constant turn direction.

Both of the above formulations are non-convex and ener-
getically equivalent, only differing slightly in the constraints
used to optimize them. We want the motion to be periodic as
the albatrosses repeat the same pieces of trajectories while
flying long distances. So we just try to find the trajectory
for one single time period T . We divide the trajectory into
N collocation points. We define dt = T/(N − 1). Here we



denote the dynamics defined in Section III in a compact form
as Ẋ = g(X,u). Since we are not minimising any cost, and
are instead solving a constraint satisfaction problem, we use a
dummy cost for the objective in the formulation. We constrain
the model to follow the equations of motion.

A. Travelling Trajectories

Since travelling trajectories are S-shaped, the periodicity
constraints are enforced by making z, V, ψ, γ to be the same
at the beginning and the end of the time period.

min
X[0],··· ,X[N ],u[0],··· ,u[N ]

0TX

s.t. z[0] = 0

V [n], cL[n] > 0

z[n] > sea-level
−π < ψ[n] < π

−π/2 < γ[n] < π/2

(z[N ], V [N ], ψ[N ], γ[N ]) = (z[0], V [0], ψ[0], γ[0])

X[n+ 1] = X[n] + g(X[n],u[n]) · dt ∀n ∈ {0, · · ·N − 1}

B. Non-travelling Trajectories

The non-travelling, circular trajectories differ from the trav-
elling ones in three constraints:

• The initial and the final air-heading angle ψ now differ
by 2π instead of 0

• The air-heading angle ψ is now restricted to be within
±3π instead of ±π

• The initial and the final x coordinates are restricted to be
equal. Note that this constraint is not strictly required.
This constraint just helps to maintain realistic values
for cL while maintaining the O-shaped feature of the
trajectory.

min
X[0],··· ,X[N ],u[0],··· ,u[N ]

0TX

s.t. z[0] = 0

V [n], cL[n] > 0

z[n] > sea-level
−3π < ψ[n] < 3π

−π/2 < γ[n] < π/2

(x[N ], z[N ], V [N ], γ[N ]) = (x[0], z[0], V [0], γ[0])

ψ[N ] = ψ[0] + 2π

X[n+ 1] = X[n] + f(X[n],u[n]) · dt ∀n ∈ {0, · · ·N − 1}

Note that since we constrain z[0] = z[N ] and V [0] = V [N ],
the total energy (kinetic + potential) change after a time-
period is zero. We use the “trust-constr” optimizer [8] from the
python scipy optimization package [9] to optimize the above
formulations. We typically use N = 50 time steps, leading to
O(500) variables and constraints. Our Python implementation
converged in O(1− 5) minutes on a MacBook Air 2015.

Fig. 2. The trajectory over two time periods for the ”travelling” formulation.
The blue layer represents the sea-level.

Fig. 3. The trajectory over two time periods for the ”non-travelling”
formulation.



C. Initializing the Optimizer

It is necessary to specify an initial guess to the optimizer.
Part of the spirit of this project is to attempt to recover the
intuition and natural phenomena of albatross flight without
artificially inserting it, and thus we do not attempt to model
actual albatross behavior in order to form the initial guess.
Instead, however, we form an initial guess that is dynamically
consistent, while violating most other constraints. To do so, we
simulate a trajectory forward in time from a (fairly arbitrarily
selected) initial condition of X(0) = [0, 0, 0, 10, π/8, 0] which
a (similarly arbitrary) constant control input of u = [1.5, π/8].
We use these control values and the resulting trajectory to form
the initial guess.

V. OPTIMIZATION EXPERIMENTS

We perform experiments with the trajectory optimization
by varying the time-period (T ), wind-strength (W0) and shear
layer thickness (δ). Our default values for all experiments
are: T = 7s,W0 = 7.8m/s, δ = 12m.

Figures 2 and 3 show the trajectories (over two time
periods) obtained with the default parameters for the
travelling and the non-travelling cases. In both cases, the
shear layer thickness is sufficiently high for the trajectories
to be somewhat three dimensional (characteristic of cases
with sufficiently thick shear layers, where the albatross has
enough wind to move without much turning). Note that for
both trajectories, the shear layer exists at z height zero, and
penetrations through the shear layer at z = 0 are the means
by which the albatross gains lift and dynamic soaring occurs.

Figure 4 shows the variation of the kinetic energy, potential
energy and the total mechanical energy over a duration of one
time period of a travelling trajectory. The change in the total
mechanical energy over the time-period is zero, as constrained
by the optimizer. This ensures that the periodic motion of the
albatross over multiple periods will have constant energy. The
energy of the albatross dips during the period as a result of
losses due to drag, and it re-gains energy by penetrating the
shear layer at z = 0. Instead of constraining V [0] = V [n], one
can constrain V [n] to be slightly higher than V [0] if we want
the glider to gain speed over time.

A. Varying the time-period

We vary the time-period of the trajectories as T =
{5s, 7s, 12s} while keeping the other parameters at the default
value for both the travelling and the non-travelling case.
For the travelling trajectories, in Figure 5, for T = 12s,
the trajectory almost completes two cycles of the upward-
downward motion in the allotted time, suggesting that T = 12s
is quite large for the characteristic albatross flight path. The
highest altitude reached is much higher for T = 7s than
T = 5s. For non-travelling trajectories in Figure 6 the path
obtained for T = 5s is almost circular, in the sense that it does
not have to turn more than once. Whereas for T = 7s and
T = 12s the glider has to turn more than once to achieve the

Fig. 4. Variation of the kinetic energy, potential energy and the total
mechanical energy over a travelling trajectory

Fig. 5. Travelling trajectories with different time periods T = {5s, 7s, 12s}.
The arrows represent the wind flow.

zero cost trajectory. Moreover, for T = 12s, the path is similar
to the travelling case with its upward-downward motion.

B. Varying the wind strength

We vary the wind strength as W0 =
{5m/s, 7.8m/s, 12m/s}. Interestingly, for both the
travelling and non-travelling cases, shown in Figures 7
and 8 respectively, there is a strictly negative correlation
between W0 and maximum altitude achieved by the albatross.
The trajectories with higher wind speeds also exhibit more
curvature in both the travelling and non-travelling cases,
traversing larger distances in the x-direction, which may be



Fig. 6. Non-travelling trajectories with different time periods T =
{5s, 7s, 12s}

explained by the fact that the higher wind speeds reduce the
need to travel parallel to the wind, in the y-direction, as there
is sufficient energy to expend more travel distance orthogonal
to this direction.

C. Varying the shear layer thickness

We vary the shear layer thickness as δ =
{1m, 3m, 7m, 12m} while keeping the other parameters
at the default value for both the travelling and the non-
travelling case. The thickness of the shear layer impacts the
amount of lift the albatross has access to during its flight. For
the travelling trajectories, the albatross flight is composed of
more, smaller angle arcs as the thickness of the shear layer
decreases. This is in line with what is seen in the flight of real
albatross birds when flying in thin shear layers, according to
[6]. For the non-travelling (or loitering) flight, the trajectories
tend to decrease in height as the shear layer decreases in
thickness. The smaller angle arc pattern is not seen for the
non-travelling trajectories because of the way the dynamics
of the flight type is constrained (in non-travelling flight,
alternating turn directions is not permitted). Therefore, the
primary trend that can be seen is a smaller range of motion
as a result of access to less energy from the shear layer.

VI. TRACKING THE OPTIMIZED TRAJECTORY

The direct collocation approach results in approximate
satisfaction of the system dynamics, due to the collocation
method as well as the tolerance in the constraints during
optimization. Additionally, when noise is added to perturb
the system dynamics, open-loop execution of the optimized

Fig. 7. Travelling trajectories with different wind-strengths W0 =
{5m/s, 7.8m/s, 12m/s}

Fig. 8. Travelling trajectories with different wind-strengths W0 =
{5m/s, 7.8m/s, 12m/s}



Fig. 9. Travelling trajectories with different wind shear layer thickness δ =
{1m, 3m, 7m, 12m}

Fig. 10. Travelling trajectories with different wind shear layer thickness δ =
{1m, 3m, 7m, 12m}

control profile can result in poor tracking of the optimized tra-
jectory. We model additive zero-mean Gaussian noise, in nu-
merical experiments, with standard deviations: [σẋ, . . . , σγ̇ ] =
[0.1 m/s, 0.1 m/s, 0.1 m/s, 1 m/s2, π/20 rad/s, π/20 rad/s]. We
then use a time-varying finite horizon LQR scheme to control
the system dynamics about the optimized trajectory in the
presence of noise.

A. LQR formulation

We formulate a finite-horizon linear quadratic regulator to
control the error coordinates, X̄(t) = X(t) − X0(t), where
X0(t) is the nominal trajectory, in this case the optimized tra-
jectory. In order to use LQR, we use a time-varying lineariza-
tion of the dynamics, Ẋ(t) = A(X(t))X(t) + B(X(t))u(t).
We assume that the nominal trajectory satisfies these dynam-
ics, Ẋ0(t) = A(X0(t))X0(t) + B(X0(t))u0(t), and that
X(t) ≈ X0(t) and thus A(X(t)) ≈ A(X0(t)), B(X(t)) ≈
B(X0(t)), and thus we can use the same linearization in the
error coordinates, evaluated at the nominal trajectory:

˙̄X(t) = Ẋ(t)− Ẋ0(t) = A(t)X̄(t) +B(t)ū(t) (10)

where we have written A(X0(t)), B(X0(t)) as A(t), B(t)
because the nominal profile X0(t) is known. ū(t) is the
deviation from the nominal control profile at time t, an error
coordinate.

The A(t) and B(t) matrices are the Jacobians of g with
respect to X and u, evaluated at X0 and u0, where g,
defined in Section III, is the dynamics transition function
Ẋ = g(X,u).

In the error-coordinates, we can define a finite-horizon LQR
to minimize the cost in Equation 11.

J = X̄T (T )Qf X̄(T ) +

∫ t=T

t=0

X̄T (t)QX̄(t) + ūT (t)Rū(t)

(11)
with Qf , Q, and R being cost weight matrices, design choices,
selected in numerical experiments as I6, I6, and I2 respec-
tively.

This results in a linear feedback law, ū∗(t) =
−R−1B(t)TS(t)X̄(t), where S(t) satisfies the continuous-
time differential Riccati equation,

−Ṡ(t) = S(t)A(t)+AT (t)S(t)−S(t)B(t)R−1B(t)TS(t)+Q
(12)

Equation 12 is solved backward in time from a final
condition, S(T ) = Qf [10]. The actual control inputs can
be found simply by taking u∗(t) = ū∗(t) + u0(t).

B. Results

Figure 11 shows the performance of the LQR compared
with the nominal trajectory as well as open-loop execution of
the nominal control inputs. Clearly, the tracking of the nominal
trajectory is not perfect, but is certainly better than the open-
loop trajectory.



Fig. 11. Comparisons of tracking an optimized trajectory with noisy dy-
namics. LQR: LQR tracking of the nominal trajectory, with noisy dynamics.
Nominal: Optimized trajectory with approximate dynamics (no noise). Open
Loop: Open-loop simulation of the nominal (optimized) control inputs with
noisy dynamics.

In some state components, particularly ψ, the LQR trajec-
tory is more jerky than the open-loop trajectory. An intuitive
explanation for this is that the LQR controller is applying
control actions to correct for noisy disturbances, and noisy
disturbances are jerky. The open-loop trajectory, on the other
hand, while also subject to noisy disturbances, is not addition-
ally subject to jerky control actions.

VII. CONCLUSION

We have largely managed to replicate the key observations
from Bousquet et al. [6]. The observations throughout Section
V are consistent with physics and intuition, as well as albatross
behavior observed in nature. An interesting extension of this
work, from the nature-observation perspective, would be to
study how albatrosses handle noise, such as unexpected wind
gusts, and whether this behavior shares any characteristics
with the LQR control implemented.

The LQR results demonstrate the ability to overcome in-
exact modeling of the dynamics in the trajectory optimiza-
tion, as well as noise injection in the system. It would be
interesting to continue this study to investigate how different
collocation techniques in the optimization routine influence
the performance of the open-loop control trajectory. Perhaps
a higher-order collocation technique such as a higher-order
Runge Kutta method, or a spline method, would yield more
accurate dynamics.

Additionally, while we worked within an optimization
framework, we did not take advantage of the freedom to
have a cost function. As noted in Section V, many of the
trajectories found contained excessive motion, or several
sequences of up-and-down motion within one period. If we
had penalized some measure of movement, such as arc length
travelled, or the time-period, perhaps we would see less of
this behavior. It would be interesting to study which cost
functions result in trajectories that are most similar to actual
albatross trajectories.

A final direction of future work we would be interested in
perusing is using Lyapunov analysis to quantify the stability
of the trajectory. It could be informative to compute regions
of convergence surrounding the trajectory to gain an under-
standing of both the magnitude of disturbance in state that the
trajectory is stable to, and regions of the trajectories that are
especially vulnerable to disturbances. It would be interesting to
compare the results of a Lyapunov analysis to data collected
on the actual trajectories of albatross flight in varying wind
conditions.
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