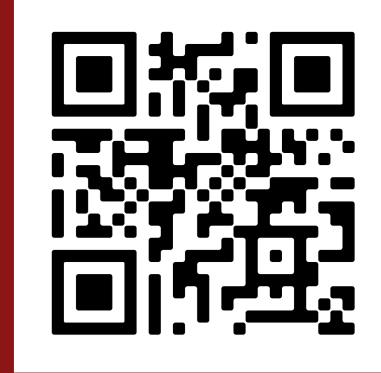


Satellite Navigation and Coordination with Limited Information Sharing

Sydney Dolan Siddharth Nayak Hamsa Balakrishnan

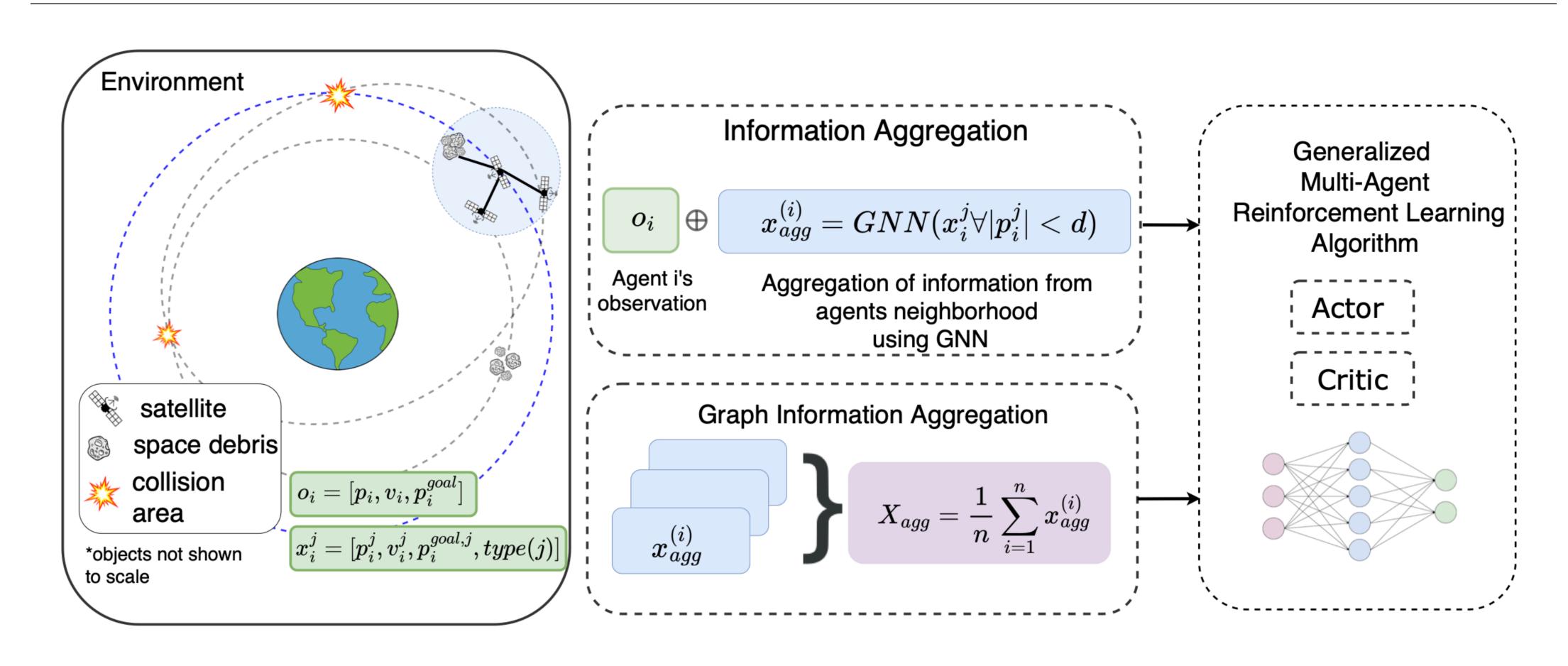
Massachusetts Institute of Technology



Overview

- We consider the problem of proximity operation satellite navigation, where satellites exist in an uncertain local environment observations are limited to the local neighborhood of each agent.
- We show that (1) through transfer learning, training can be accelerated and in fact out-perform models trained solely on the satellite environment, and (2) in testing, it scales well to environments with arbitrary numbers of agents and obstacles.

InforMARL Model Architecture

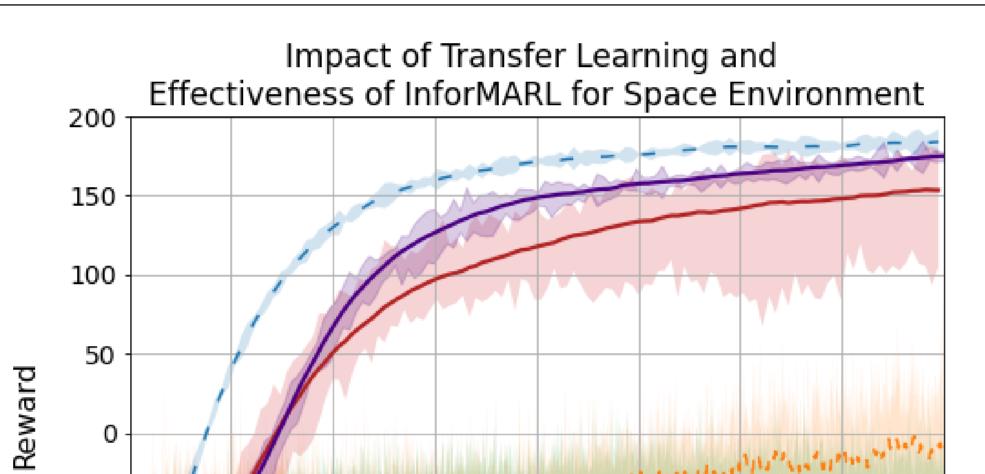


Background and Motivation

- There are more objects in orbit than ever before, motivating the need for autonomous collision avoidance mechanisms.
- Transfer learning has achieved extensive success by leveraging prior knowledge of past learned policies of relevant tasks.
- We consider two different environments, whose scale differs vastly (m/s vs km/s) but whose numerical values are quite similar

Ground Environment	Space Environment
$\ddot{x} = -\frac{\gamma}{m}\dot{x} + \frac{f_x}{m}$	$\ddot{x} = 3\omega_n^2 x + 2\omega_n \dot{y}$
$\ddot{y} = -\frac{\gamma}{m}\dot{y} + \frac{f_y}{m}$	$\ddot{y} = -2\omega_n \dot{x}$

- **Environment**: The agents are depicted by green circles, the goals by red rectangles, and the unknown obstacles by gray circles. $x_{agg}^{(i)}$ represents the aggregated information from the neighborhood, which is the output of a GNN. A graph is created by connecting entities within the sensing-radius of the agents. The inter-agent edges are bidirectional, while the edges between agents and non-agent entities are unidirectional.
- 2. Information Aggregation: Each agent's observation is concatenated with $x_{agg}^{(i)}$.
- 3. Graph Information Aggregation: The $x_{agg}^{(i)}$ from all the agents is averaged to get X_{agg} .
- 4. Actor-Critic: The concatenated vector $[o^{(i)}, x^{(i)}_{agg}]$ is fed into the actor network to get the action, and X_{agg} is fed into the critic network to get the state-action values.



-50

-100

-150

0.00

0.25

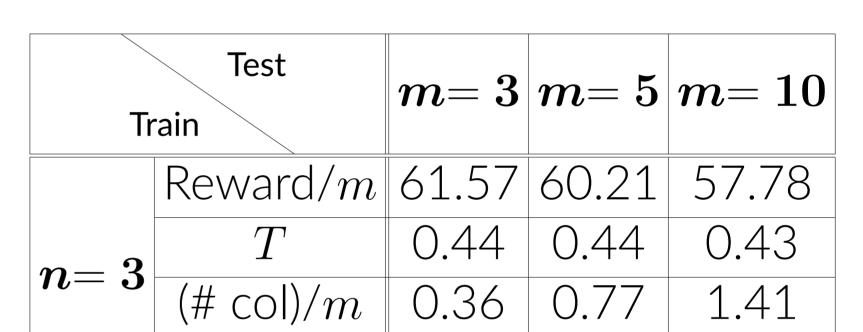
0.50

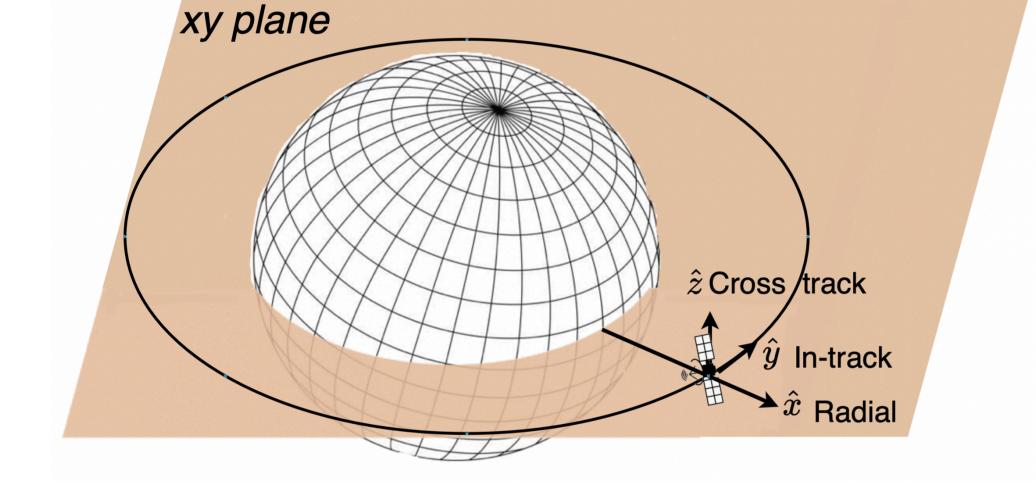
Global Information

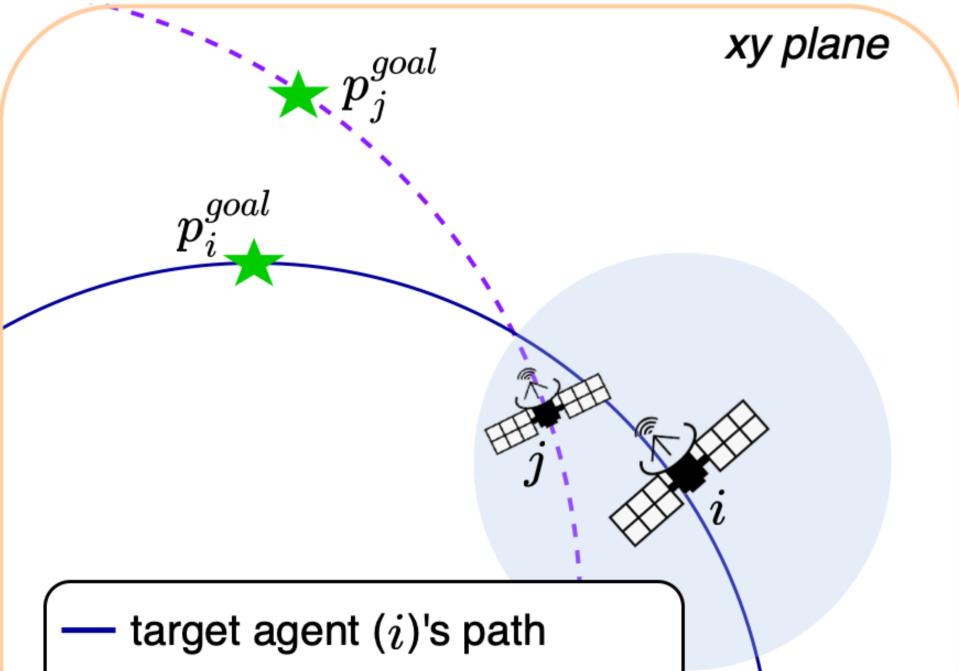
RMAPPO

VDN

Results









1.00

Training Steps

0.75

1.25

1.50

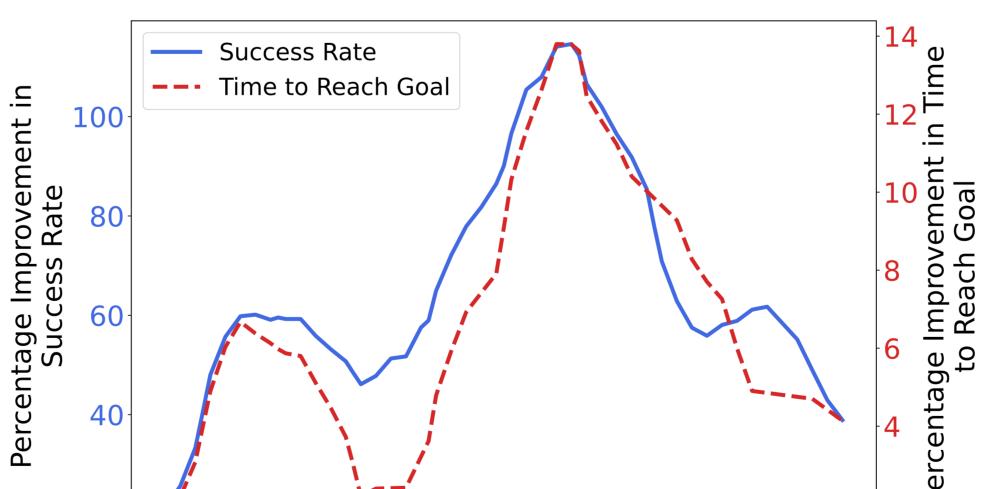
InforMARL w/

Local Information

InforMARL

1.75

2.00

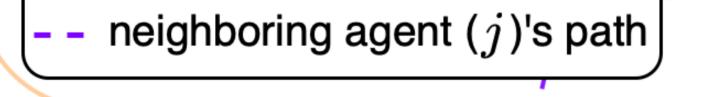


	S%	98	94	96
n=5	Reward/ m	60.52	60.52	57.07
	T	0.44	0.44	0.44
	(# col)/m	0.78	1.28	1.41
	S%	98	98	91

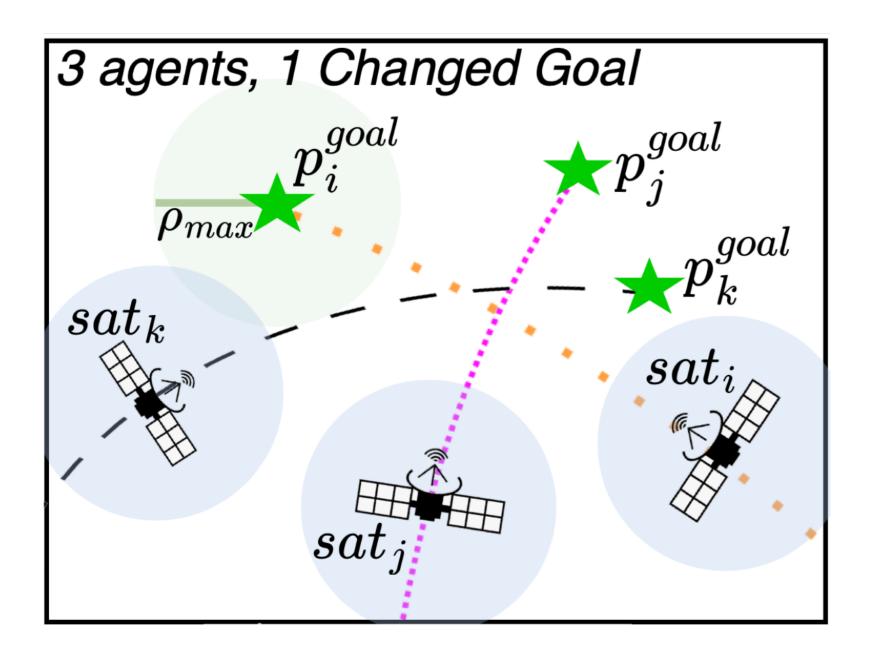
Table 1: Performance metrics obtained by training InforMARL on a space environment with nsatellites and testing it on one with m satellites: (a) Total reward obtained in an episode per agent, Reward/m. (b) Fraction of episode taken on average by agents to reach their goal, T (lower is better). (c) Average number of collisions per agent in an episode, #col/m (lower is better). (d) Success rate, S%: percentage of episodes in which all agents are able to get to their goals (higher is better)

Discussion and Future Work

Figure 2 demonstrates the performance improvement (relative to the performance without goal sharing) that is achieved through goal sharing, as the maximum goal reset distance increases. Positive values in Figure 2 indicate that the success rates *increase* with goal-sharing and the times taken by agents to reach their goals *decrease*, illustrating the benefits of goal-sharing for all values of ρ_{max} .



Special Case: Goal Sharing Scenarios



 $\int_{20}^{40} \int_{0.2}^{40} \int_{0.4}^{4} \int_{0.6}^{40} \int_{0.8}^{40} \int_{1.0}^{4} \int_{0.2}^{40} \int_{0.2$

Future work will include:

- Developing a more realistic space traffic simulation environment
- Accounting for communication delays and losses
- Adding mechanisms to provide safety guarantees