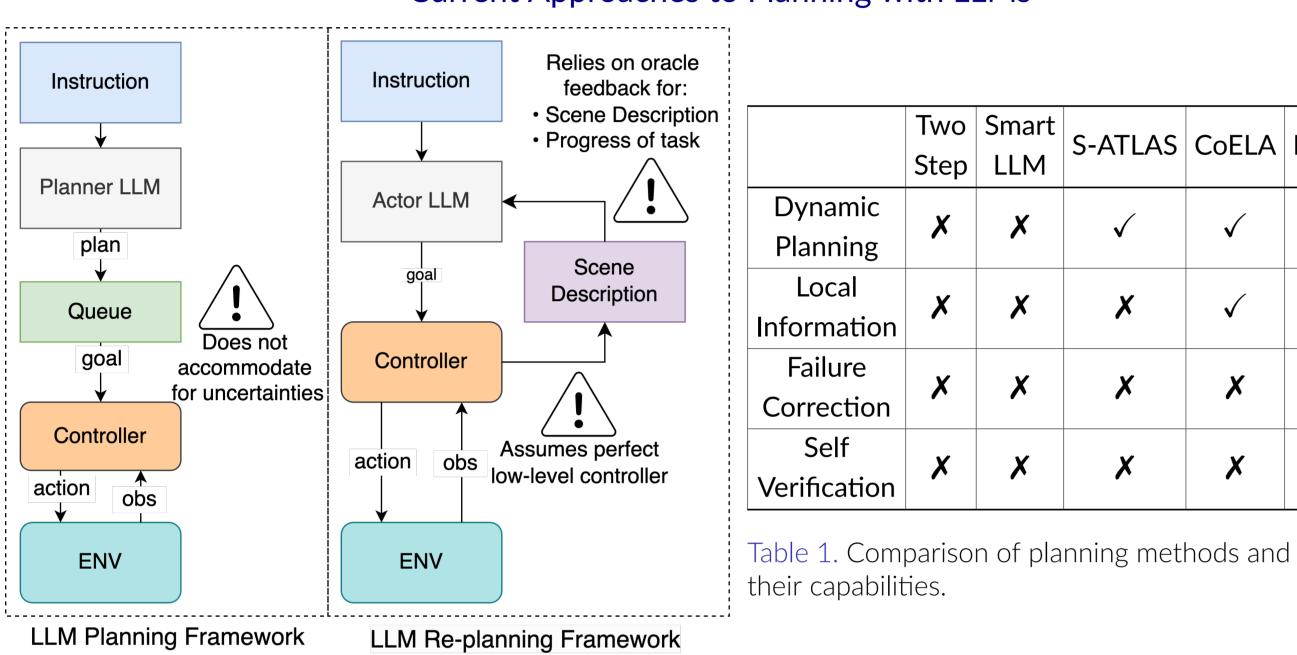


Planning with LLMs



Current Approaches to Planning with LLMs

Need a method that can accommodate uncertainties, and does not rely on perfect low-level control and oracle feedback.

Results

Algorithm	LM	SR↑	TR↑	C↑	B↑		Modules	SR ↑
Act	GPT-4V	0.33	0.67	0.91	0.59		Used	
ReAct	GPT-4V	0.34	0.72	0.92	0.67		Actor	0.33
СоТ	GPT-4V	0.14	0.59	0.87	0.62		Planner +	
SmartLLM	GPT-4V	0.11	0.23	0.91	0.45		Actor +	0.45
CoELA	GPT-4V	0.25	0.46	0.76	0.73		Verifier	
LLaMAR	GPT-4	0.51	0.85	0.95	0.83		Planner +	0.67
LLaMAR	LLaVA	0.54	0.84	0.91	0.75		Actor +	
LLaMAR	IDEFICS-2	0.57	0.86	0.94	0.78		Corrector [‡]	
LLaMAR	CogVLM	0.61	0.89	0.95	0.80		Planner +	
LLaMAR	GPT-4V	\cap	0.87	0.95	0.82		Actor +	0.66
(w/o expl)		0.62					Corrector +	0.00
LLaMAR		044	0.01	0.07	0.00		Verifier +	
(w/ expl)	GPT-4V	0.66	0.91	0.97	0.82	_	Table 3 Perfo	

LLaMAR vs Baseline Performance

Table 2. Comparison of LLaMAR against baselines averaged across all tasks.

Partitioning the planning process into distinct modules enhances performance in MAP-THOR

modules in LLaMAR

LLaMAR: Long-Horizon Planning for Multi-Agent Robots in Partially Observable Environments

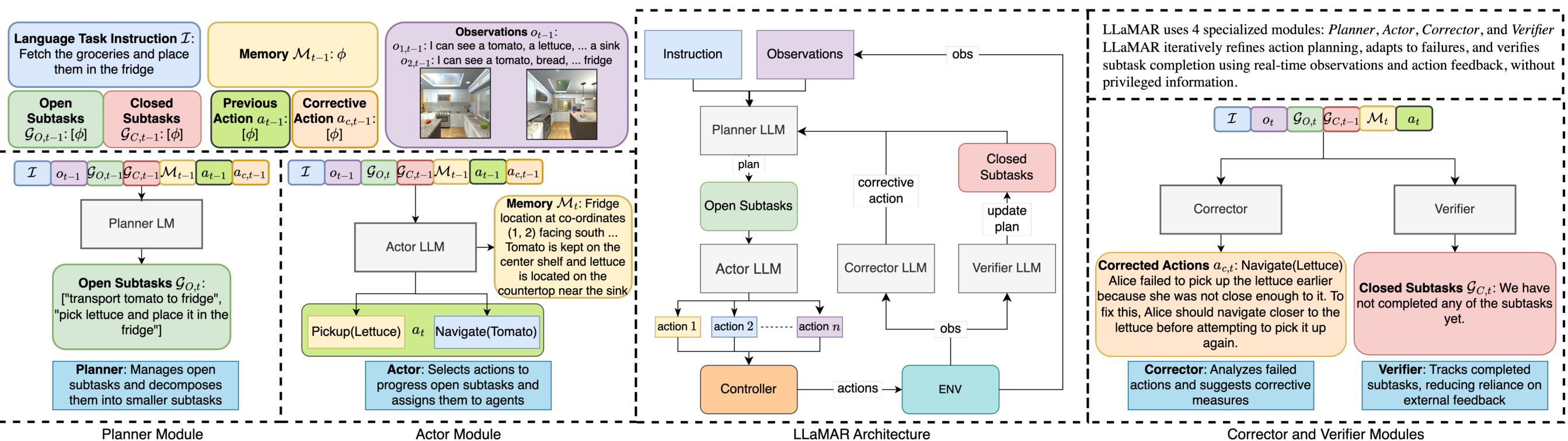
Siddharth Nayak^{* 1} Adelmo Orozco^{* 1} Marina Ten Have¹ Vittal Thirumalai¹ Jackson Zhang¹ Darren Chen¹ Aditya Kapoor² Eric Robinson³ Karthik Gopalakrishnan⁴ James Harrison⁵ Brian Ichter⁵ Anuj Mahajan⁶ Hamsa Balakrishnan¹

¹Massachusetts Institute of Technology ²TCS RnI ³USAF-MIT AI Accelerator ⁴Stanford University

C ↑	B↑
0.91	0.59
0.92	0.69
0.97	0.84
0.97	0.82
	0.91 0.92 0.97

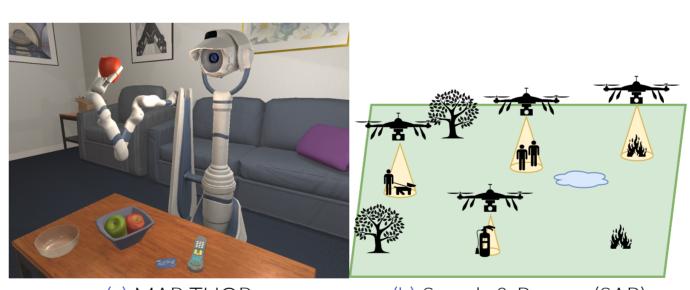
Table 3. Performance in the 2-agent scenarios in MAP-THOR obtained by ablating different

LLaMAR is able to perform as well as a model with an oracle-based verifier



Task Environments

- **MAP-THOR**: A test-suite and benchmark on language-based multi-agent robotic planning based on AI2THOR.
- Search & Rescue (SAR): Agents are tasked with extinguishing fires before they spread and rescuing missing humans.
- LLaMAR: Creates performant long-horizon planning in multi-agent tasks by generating subtasks and assigning them to different agents.



Conclusions

- LLaMAR creates long-horizon plans in multi-agent tasks by creating and assigning subtasks to different agents.
- LLaMAR enables performant multi-agent planning in uncertain environments.
- We introduce MAP-THOR a benchmark dataset consisting of language-conditioned multi-agent robotic tasks with various difficulty levels.

This research was sponsored by the U.S. AFRL/U.S. Air Force Artificial Intelligence Accelerator (Cooperative Agreement Number FA8750-19-2-1000).

⁵Google DeepMind

⁶Apple

LLaMAR Architecture

(a) MAP-THOR

(b) Search & Rescue (SAR)

We perform experiments in two different multi-agent robotics environments.

# of	MA	P-TH	SA SR↑ TR		
agents	SR↑	TR↑	C↑	SR↑	TR
1	0.37	0.67	0.87	0.28	0.7
2	0.62	0.87	0.95	0.44	0.8
3	0.70	0.91	0.98	0.68	0.9
4	0.68	0.90	0.99	0.72	0.9
5	0.62	0.90	0.99	0.74	0.9

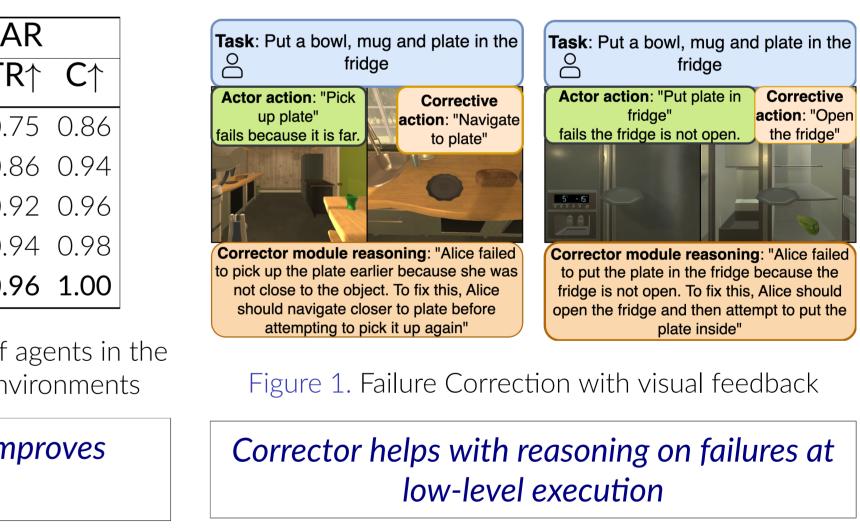
Table 4. LLaMAR with various number of agents in the scenario in both MAP-THOR and SAR environments

Increasing number of agents improves performance in SAR

Limitations & Assumptions

- module's memory.
- multiple language models during each iteration.

Results



• Low-level controllers can perform language-conditioned actions. e.g., Pickup(Bow1) • When an agent observes an object, its location is inherently stored in the navigation

Performance is limited by the underlying VLM and hence has limited spatial reasoning • LLaMAR incurs a higher computational cost at each step due to the involvement of

• The experiments are conducted in a simulated environment rather than in the real world.