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Standard MARL Recipe

Key Features Expected from MARL algorithms:
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Need a method which is agnostic to number of entities in the environment

Motivation

Consider MAPPO (Yu et al. 2022) with different amount of information included as inputs to the
actor‐critic networks.
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(b) Training MAPPO with different information modes

There is a significant improvement in performance when MAPPO has access to global information.
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1. Environment: The agents are depicted by green circles, the goals by red rectangles, and the
unknown obstacles by gray circles. A graph is created by connecting entities within the
sensing‐radius of the agents. The inter‐agent edges are bidirectional, while the edges
between agents and non‐agent entities are unidirectional.

2. Information Aggregation: x
(i)
agg represents the aggregated information from the neighborhood,

which is the output of a GNN. Each agent’s observation is concatenated with x
(i)
agg.

3. Graph Information Aggregation: The x
(i)
agg from all the agents is averaged to get Xagg.

4. Actor‐Critic: The concatenated vector [o(i), x
(i)
agg] is fed into the actor network to get the

action, and Xagg is fed into the critic network to get the state‐action values.

Task Environments

We perform experiments in 4 different environments: target, coverage, polygon‐formation and
line‐formation environments.
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Conclusions

InforMARL uses a graph neural network (GNN)‐based architecture for scalable multi‐agent RL
in a decentralized fashion.
InforMARL is transferable to scenarios with a different number of entities in the environment
than what it was trained on.
InforMARL has better sample complexity than most other standard MARL algorithms with
global observations.

Results

Comparison to Baselines
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Algorithm Information N = 3 N = 10
mode R T # col S% R T # col S%

RMATD3 Global 105.49 0.51 3.07 67 ‐131.72 0.99 11.14 1
RQMIX Global 19.21 0.77 1.42 28 ‐76.98 0.96 17.04 2
RVDN Global 64.04 0.62 1.05 45 157.63 0.64 10.00 43
GPG (dynamic) Local −46.27 0.87 0.43 8 ‐173.53 1.00 4.68 0
DGN + ATOC Local 67.70 0.66 1.49 35 ‐201.01 1.00 4.06 0
RMAPPO Global 173.13 0.41 1.47 96 366.81 0.44 13.21 79
InforMARL Local 205.24 0.38 1.45 100 429.14 0.39 10.50 100

InforMARL significantly outperforms most baseline algorithms. Although RMAPPO has similar
performance, it requires global information.

Scalability and Performance in different task environments

Test
Train

n = 3 n = 7 n = 10

m = 7

Reward/m 61.16 62.23 61.32
T 0.38 0.40 0.40

(# col)/m 0.74 0.66 0.70
S% 100 100 100

m = 10

Reward/m 58.59 58.23 58.67
T 0.38 0.40 0.39

(# col)/m 0.95 0.88 0.87
S% 100 99 100

m = 15

Reward/m 53.19 53.46 54.21
T 0.39 0.40 0.40

(# col)/m 1.28 1.21 1.20
S% 100 99 99

Table 1. InforMARL trained and tested in the target
environment when then no. of agents is varied.

Environment m Metric Algorithm
RMAPPO InforMARL

Coverage
3 T 0.34 0.36

S% 100 100

7 T 0.42 0.43
S% 100 99

Formation
3 T 0.31 0.30

S% 100 100

7 T 0.47 0.43
S% 100 100

Line
3 T 0.24 0.21

S% 100 100

7 T 0.38 0.36
S% 100 100

Table 2. InforMARL was trained with 3 agents in the
environment whereas MAPPO was trained in
environments with 3 and 7 agents.

InforMARL is able to achieve a success rate of almost 100% across all scenarios in different en‐
vironments whilst also being transferable.
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