

Wengi Ding¹ Sydney Dolan¹ Karthik Gopalakrishnan ² Siddharth Nayak¹ Kenneth Choi ¹

Standard MARL Recipe

Need a method which is agnostic to number of entities in the environment

Motivation

Consider MAPPO (Yu et al. 2022) with different amount of information included as inputs to the actor-critic networks.

There is a significant improvement in performance when MAPPO has access to global information.

This research was sponsored in part by the NASA University Leadership initiative (grant #80NSSC20M0163) and the U.S. AFRL/U.S. Air Force Artificial Intelligence Accelerator (Cooperative Agreement Number FA8750-19-2-1000). The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of NASA, the U.S. Air Force or the U.S. Government.

InforMARL: Scalable Multi-Agent Reinforcement Learning through Intelligent Information Aggregation

¹Massachusetts Institute of Technology

InforMARL

- **Environment**: The agents are depicted by green circles, the goals by red rectangles, and the unknown obstacles by gray circles. A graph is created by connecting entities within the sensing-radius of the agents. The inter-agent edges are bidirectional, while the edges between agents and non-agent entities are unidirectional.
- 2. Information Aggregation: $x_{aqq}^{(i)}$ represents the aggregated information from the neighborhood, which is the output of a GNN. Each agent's observation is concatenated with $x_{agg}^{(i)}$.
- 3. Graph Information Aggregation: The $x_{agg}^{(i)}$ from all the agents is averaged to get X_{agg} .
- Actor-Critic: The concatenated vector $[o^{(i)}, x^{(i)}_{agg}]$ is fed into the actor network to get the action, and X_{agg} is fed into the critic network to get the state-action values.

Task Environments

We perform experiments in 4 different environments: target, coverage, polygon-formation and line-formation environments.

- InforMARL uses a graph neural network (GNN)-based architecture for scalable multi-agent RL in a decentralized fashion.
- InforMARL is transferable to scenarios with a different number of entities in the environment. than what it was trained on.
- InforMARL has better sample complexity than most other standard MARL algorithms with global observations.

Hamsa Balakrishnan ¹

²Stanford University

Information Algorithm mode RMATD3 Global Global RQMIX Global RVDN GPG (dynamic) Local DGN + ATOC Local RMAPPO Global Local InforMARL

InforMARL significantly outperforms most baseline algorithms. Although RMAPPO has similar performance, it requires global information.

Scalability and Performance in different task environments

Train Test $n = 3$ $n = 7$ $n = 10$ Environment m MetricAlgorithmReward/m 61.16 62.23 61.32 61.32 3 T 0.34 0.34 T 0.38 0.40 0.40 $Coverage$ 3 T 0.34 0.40	n rMARL).36
Test $n = 3$ $n = 7$ $n = 10$ Link former in the first interval in the true in the	rMARL).36
Reward/m 61.16 62.23 61.32 3 T 0.34 0.34 T 0.38 0.40 0.40 0.40 $S\%$ 100).36
T 0.38 0.40 0.40 Coverage S^{∞} 100	$1 \cap \cap$
	100
m = 7 (# col)/m 0.74 0.66 0.70 Coverage 7 T 0.42).43
<i>S</i> % 100 100 100 ' <i>S</i> % 100	99
Reward/m 58.59 58.23 58.67 3 T 0.31 0).30
T 0.38 0.40 0.39 Formation S^{5} 100	100
m = 10 (# col)/m 0.95 0.88 0.87).43
<i>S</i> % 100 99 100 / <i>S</i> % 100	100
Reward/m 53.19 53.46 54.21 C 3 T 0.24 C).21
T = 0.39 0.40 0.40 100	100
m = 15 (# col)/m 1.28 1.21 1.20).36
S% 100 99 99 100	100

Table 2. InforMARL was trained with 3 agents in the Table 1. InforMARL trained and tested in the target environment whereas MAPPO was trained in environment when then no. of agents is varied. environments with 3 and 7 agents.

InforMARL is able to achieve a success rate of almost 100% across all scenarios in different environments whilst also being transferable.

Results

Comparison to Baselines

			I					
N = 3				N = 10				
R	Т	# col	S%	R	Т	# col	S%	
105.49	0.51	3.07	67	-131.72	0.99	11.14	1	
19.21	0.77	1.42	28	-76.98	0.96	17.04	2	
64.04	0.62	1.05	45	157.63	0.64	10.00	43	
-46.27	0.87	0.43	8	-173.53	1.00	4.68	0	
67.70	0.66	1.49	35	-201.01	1.00	4.06	0	
173.13	0.41	1.47	96	366.81	0.44	13.21	79	
205.24	0.38	1.45	100	429.14	0.39	10.50	100	