
Solving the 3D Bin Packing Problem With
Reinforcement Learning

Siddharth Nayak Harshad Khadilkar Ansuma Basumatary
Richa Verma

1 / 50

Overview

1 The problem statement

2 Why Reinforcement Learning?

3 Related Works

4 Assumptions

5 Reinforcement Learning Background

6 Different Ideas we tried!
Value based methods

Stability Scores Method

Policy based methods
DDPG and SAC
Hierarchical Model

Imitation Learning
Behavioral Cloning

7 Conclusions

8 Possible ideas to try!

2 / 50

The problem statement

The Problem Statement

Given a set of boxes, pack them in a container such that the volume
packed is optimised.
Also, for a real-world deployment on robots, certain physical
constraints should be satisfied along with real-time decision making.

Figure: The setup to place boxes in a new container if no feasible positions are
found in any of the previous containers. (LDC: Long Distance Container)

3 / 50

Why Reinforcement Learning?

Why Reinforcement Learning?

Recent success of RL for combinatorial problems like the travelling
salesman problem, vehicle-routing problem, job-scheduling problem,
etc.

RL may give a better performance than traditional methods on
sequential decision making problems.

4 / 50

Related Works

Related Works

Ranked Reward(R2)1 algorithm computes ranked rewards by
comparing the terminal reward of the agent against its previous
performance, which is then used to update the neural network.

Deep RL has been used in designing a bin with least surface area that
could pack all the items , which uses policy-based RL (Reinforce) with
a 2-step Neural Network (Ptr-Net) consisting of RNNs and has shown
to achieve 5% improvement over the heuristic methods2.

1Laterre et al., “Ranked Reward: Enabling Self-Play Reinforcement Learning for
Combinatorial Optimization”.

2Hu et al., “Solving a New 3D Bin Packing Problem with Deep Reinforcement
Learning Method”.

5 / 50

Assumptions

We make the following assumptions:

Boxes are cuboidal in shape

Order of boxes is not known a priori.

Once a box is placed, the agent cannot shift it.

Boxes can be rotated by ±90◦ only along three axes.

The dimensions are integer (smallest scale 1cm).

The agent can see n upcoming boxes.

Boxes can be placed at a location only if all the corners have same
level.(called feasibility)

A box cannot be placed below an already placed box.

6 / 50

Assumptions

Assumptions

(a) Rotation is
allowed

(b) Discrete Space

(c) All corners are
not at the same
level

(d) Cannot place
box below an
already placed one

Figure: Assumptions

7 / 50

Reinforcement Learning Background

Background

We denote some basic reinforcement learning terminology used.

S : State

A : Action

R : Reward

π(s) or π : Function which maps states to action

Q(s, a) : Q-value function or action-value function, which is the
expected reward if agent is in state(s) and takes action(a)

We try to maximise the expected reward.

8 / 50

Reinforcement Learning Background

State Representation

We denote each container with a 2D grid of shape 45× 80.
The values in the cell denote the height upto which that cell is filled.

Figure: Space Representation. We will refer this type of state representation as
top-view of container

9 / 50

Reinforcement Learning Background

Baselines

First Fit: Place boxes in the first found feasible location, scanning
from the top left of the container. If no feasible locations are found in
the currently used containers, the orientation of the box is changed
and the search is executed again.

Floor Building: attempts to pack the container layer-by-layer, from
the floor up. So effectively searches for positions with lowest height h
possible.

Column Building: attempts to build towers of boxes with the
highest feasible h coordinate in the container. But not stable from a
robot packability perspective.

10 / 50

Reinforcement Learning Background

Baselines

(a) Floor Building (b) Column Building

11 / 50

Different Ideas we tried! Value based methods

Stability Scores

We assign scores for each position for a given box, which we call
stability scores, because they represent the stability of the overall
structure once the box has been placed.

Higher the stability score for a particular position, more favourable is
that position to place the box.

But we don’t want to be greedy with this score and place the boxes
just according to the scores. This is where the RL agent will choose a
position from the top n stability score positions.

12 / 50

Different Ideas we tried! Value based methods

Stability Scores Equation

S = −α1 Gvar + α2 Ghigh + α3 Gflush − α4 (i + j)− α5 hi ,j (1)

Gvar: Sum of absolute differences of heights with neighbouring cells
around the box. The walls do not contribute to this term.
Ghigh: We count the number of bordering cells that are higher than
the height of the proposed location after loading.
Gflush: Denotes how smooth the surface will be after placing the box.
We count the number of bordering cells that would be exactly level
with the top surface of the box, if it was placed in the proposed
location.
(i + j): We want the agent to start placing the boxes closer to the
top-left of the box.
hi ,j : We want the agent to place the boxes in a layer-wise manner.
i.e. start a new layer(floor) only if there are no positions for the
current box.

13 / 50

Different Ideas we tried! Value based methods

Stability scores

14 / 50

Different Ideas we tried! Value based methods

Search Space

Once a box is placed at a position (i , j), we append the the tuple
(i , j) in the search space.

If we want to to place a box of dimensions (l , b, h), while evaluating
the stability scores at (i , j) we also evaluate the stability scores at
(i , j ± l), (i ± b, j), (i ± b, j ± l).

Once box has been placed, we remove all the points from the search
space which come under the recently placed box.

Figure: The search space evolution

15 / 50

Different Ideas we tried! Value based methods

WallE - the heuristic algorithm

We use the stability score to guide the agent to place the box.

For each box we find the stability score at all the positions in the
search space, for all orientations.

Then we place the box at the position which has the highest stability
score.

Performs slightly better than the baselines!

16 / 50

Different Ideas we tried! Value based methods

PackMan - Heuristic + RL

Use the stability scores to give choices to the RL agent.

Give the top-K (positions,orientations) to the agent.

State for the agent is the current top-view of the container and the
projected top-view of the container if the box is placed at the
proposed location.

The forward pass for all the K -(positions,orientations) is given as a
batch.

17 / 50

Different Ideas we tried! Value based methods

Rewards for PackMan

At each loading step t, the environment returns a step reward given by,

rt = β1
vbox,t

T · L · B · H
− β2

hmax − hmin

H
− β3fnew edges + β4Si,j , (2)

T : total number of containers used.
L : length of the container

B : width of the container
H : height of the container

vbox,t : volume of the current box

hmax − hmin : variation in height across all occupied containers

fnew edges : count of new edges getting created due the loading of the box

Si,j : stability score at position (i , j)

18 / 50

Different Ideas we tried! Value based methods

Terminal Reward

ζ =
Vpacked

T · L · B · H
− τ (3)

τ : Average packing fraction over all episodes since the start of
training.

The terminal reward is back-propagated through all steps in an episode
with discount factor ρ = 0.99.

19 / 50

Different Ideas we tried! Value based methods

Experiment Details

We use 16 containers each of size 45× 80 all lined one after another.
Thus the container top-view is of size 45× 1280

We make a dataset3 of boxes of random sizes which would ideally fit
with 100% packing efficiency in 10 containers if placed perfectly.

We use two different methods to reduce the dimension size of the
input to the network, although both of them give similar results.

MaxPooling
Aggregate States

We give top-10 positions to the RL agent.

3This artificial dataset was made to simulate the episodes and should not be
confused with datasets used in supervised learning.

20 / 50

Different Ideas we tried! Value based methods

Networks Used

MaxPooling
(8x8)kernel
(stride:8)

80
0

80
0

20
0

20
0

75

75

25 5 1

(a) MaxPooling

80
0

80
0

20
0

20
0

66

5 5 1

(b) Aggregate State

21 / 50

Different Ideas we tried! Value based methods

Networks Used

MaxPooling: We use a maxpooling layer of kernel size 8× 8 before
linearising them. So the maxpooling converts the 45× 1280 input to
5× 160, which after linearisation is an 800−dimensional vector
Aggregate State: We use the aggregate function where the input state
image is divided into sub-sections of size 9× 8. Each of these sub-section(I)
is then aggregated using the following formula:

mean(I)−min(I)

max(I)−min(I)
(4)

So the input image is resized from 45× 1280 input to 5× 160 which is
linearised to an 800-dimensional vector.

Advantage of maxPooling over Aggregate state: The maxPooling operation
can be done in a GPU with much higher speed as compared to the aggregate
function, which is evaluated in a CPU.

22 / 50

Different Ideas we tried! Value based methods

Result: Q-Network
Initialize replay bufferM to capacity N ;
Initialize action-value function Q with random weights;
while episode num < tot episode do

Initialise state s1 to the current container state;
for t = 1,T do

Compute top-K box locations for each orientation ordered by stability
score;

Compute future states for each location;
With probability ε select a random action (location) at ;
else select at = maxa Q

∗(φ(st), a; θ);
Execute action at in environment and observe reward rt and state st+1;
Store transition (st , rt , st+1) in M;
Sample random minibatch of transitions (sj , rj , sj+1) from M;

Set yj =

{
rj for terminal sj+1

rj + γmaxa′ Q(sj+1, a
′; θ)

for non-terminal sj+1

;

Perform a gradient descent step on (yj − Q(φj , aj ; θ))2

end
episode+ = 1;

end
Algorithm 0: PackMan Algorithm

23 / 50

Different Ideas we tried! Value based methods

Results

0 20 40 60 80 100

72

74

76

78

80

82

84

Training Episode

P
e
rc
e
n
ta
g
e
F
ill

Figure: Improvement is there in performance, but need to train more and show
saturation!

24 / 50

Different Ideas we tried! Value based methods

Speed comparison

76

78

80

82

84

86

F
ill
P
e
rc
e
n
ta
g
e

Fill percentage comparision of different algorithms

Packman

WallE

Floor Building

Column Building

First Fit

Figure: PackMan performs better than all others!

25 / 50

Different Ideas we tried! Value based methods

Advantages and Disadvantages of using Stability Scores

Advantages
Helping the RL agent in choosing a small set of options.
Guarantee of all the boxes getting placed in the containers.
Sample efficient as most of the actions are good enough for achieving
the goal.

Disadvantages
Cost(time) of evaluating stability scores is very high. Especially when
the search space has increased in size.

26 / 50

Different Ideas we tried! Value based methods

What if we learnt a function to get stability scores?

The main disadvantage of PackMan is the computations required for
evaluating the stability scores.

Idea: Learn a network which will give approximate stability score
values for a given top-view state and the current box dimension.

Use SegNet4 a network used for semantic segmentation of images.
The SegNet will classify each pixel in the top-view state representation
with one of the [-10,-5,-4,-3,-2,-1,0,1,2,3,4,5] stability scores.

4Badrinarayanan, Kendall, and Cipolla, “SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation”.

27 / 50

Different Ideas we tried! Value based methods

SegNet for our problem

Figure: SegNet5: Input will be the top-view of the container and top-view of
current box (2 channels). Output will be an array with stability scores at each
position.

5Image for illustrative purposes only
28 / 50

Different Ideas we tried! Value based methods

What if we learnt a function to get stability scores?

Advantages:
Lesser computation time for stability scores while training the RL agent.

Problems:
The state representations have to be good enough, so that SegNet can
learn co-relations between the state representations and stability scores.
Even small errors in classifying the pixels can cause the agent to place
the box in an unstable place rendering the whole structure to be
unstable.

Results:
The network could not learn the co-relations as the loss saturated at a
very high value.
Haven’t experimented with this enough, so a viable option to try!

29 / 50

Different Ideas we tried! Policy based methods

Policy Based methods

The first thing which comes to one’s mind when he/she is told to use
RL for this problem would probably be this!

State(s) Top view of container + dimensions of box

Action(a) Let the agent give (i , j) to place the box

We try to find a policy πθ which maximises the expected
discounted-reward

J(θ) = E
s0,a0,...sT

[T∑
t=0

γtr(st , at)
]

(5)

30 / 50

Different Ideas we tried! Policy based methods

Deep Deterministic Policy Gradient(DDPG)6

Used when action space is continuous.

Maps states to actions directly.

Is deterministic.

In our case gives (i,j): the co-ordinates to place the current box.

6Lillicrap et al., “Continuous control with deep reinforcement learning”.
31 / 50

Different Ideas we tried! Policy based methods

Soft Actor Critic(SAC)7

Used when action space is continuous.
Gives a mean and standard deviation for each state to model a
Gaussian Distribution over the actions.
We sample from the distribution to get the co-ordinates(i , j) to place
the box.

7Haarnoja et al., “Soft Actor-Critic: Off-Policy Maximum Entropy Deep
Reinforcement Learning with a Stochastic Actor”.

32 / 50

Different Ideas we tried! Policy based methods

Disadvantages of using SAC and DDPG for our problem

During training, if we use a randomly initialised policy, it may not be
feasible to place the box at the position given by the agent. So we
have to give the same state once again(for stochastic policies) discard
the box completely.

Sample inefficient, as a lot of the positions given by the agent are not
feasible.

Even if there is a small difference in the predicted position, the further
placements of the boxes would be hampered.

Figure: Bad placement of boxes due to small errors in co-ordinate values

33 / 50

Different Ideas we tried! Policy based methods

Hierarchical Model

Here we have two agents: Macro and Micro

Macro: Chooses the quadrant.

Micro: Chooses the sub-quadrant in the quadrant given by macro.

Now in the given sub-quadrant, choose position as:
(i , j) = argmaxi ,j score(sub-quadrant)

34 / 50

Different Ideas we tried! Policy based methods

Hierarchical Model

State Action

Macro Top view of container + dimensions
of box

choose quadrant

Micro Top view of quadrant chosen by
macro + dimensions of box

choose sub-
quadrant

Final choose (i , j) ac-
cording to stability
score

Advantage: Search Space for evaluating stability scores is small and
constant.

Disadvantage: The final action is not taken by the agent but by the
heuristic, so the network did not learn the co-relations of the state
and the action quickly.

35 / 50

Different Ideas we tried! Policy based methods

Result: Macro Policy πM , Micro Policy πm
random initialization of πM , πm ;
replayBufferMacro,replayBufferMicro;
while episode num < tot episode do

aM = epsGreedy(π(sM));
sm = getMicroState(sM , aM);
am = epsGreedy(π(sm));
(i , j) = chooseLocation(am, aM) # returns argmax of stability scores in

sub-quadrant;
if feasible action then

reward = +1,;
else

reward = −3;
end
store the tuple < sm, am, reward , next sm > in replayBufferMicro;
store the tuple < sM , aM , reward , next sM > in replayBufferMacro;
Update policy according to DDPG or SAC;
episode+ = 1;

end 36 / 50

Different Ideas we tried! Imitation Learning

Behavioural Cloning

Behavioural Cloning(BC) is learning a function which maps states
to actions from an expert policy.

Expert policies can be either a table which contains π∗(s) or some
kind of heuristic which gives π(s)(not the best one but good enough)

Can use these (imitated)policies as an initialisation for policy-based
methods.

37 / 50

Different Ideas we tried! Imitation Learning

Behavioural Cloning

This can be a fairly good initialisation for the policy-based agents to
start learning.

Result: Policy π
random initialization of π ;
while episode num < tot episode do

generate episode(S,A∗) with the optimal actions for 100% packing ;
get action predictions: A = π(S) for states in episode;

L = ‖A −A∗‖2
2;

backprop;
episode+ = 1;

end

38 / 50

Different Ideas we tried! Imitation Learning

States for Imitation Learning

We used two different state representations:
Top-view of container + box dimensions.

The top-view of the box is linearised.
The box-dimensions are concatenated just before the final layer.

Top-view of past four frames of container + dimensions of past four
boxes added.

The top-view of the past four frames are concatenated as channels of
an image. So the top-view input shape is 45 × 80 × 4.
The top-view is not linearised.
The dimensions of the past four boxes are concatenated just before the
final layer.

39 / 50

Different Ideas we tried! Imitation Learning

Behavioural Cloning

Figure: The MSE loss for the experiment with history saturates at a lower value
than the experiment without history

40 / 50

Different Ideas we tried! Imitation Learning

step pred x pred y opt x opt y

0 0 0 0 0

1 2 1 0 0

2 0 0 0 0

3 7 8 0 26

4 0 25 0 26

5 0 25 0 26

6 0 45 0 46

7 0 45 0 46

8 0 45 0 46

9 0 67 0 66

10 0 66 0 66

Table: Most of the predicted actions differ from the optimal actions by a very
small value.

41 / 50

Different Ideas we tried! Imitation Learning

Behavioural Cloning

Using the imitated policy directly can be hard, as optimal action and
the predicted action can differ by a very small value, but the
consequences of the placement would hamper the further placement
of boxes as shown in Fig.10.

Solution:
Search in the neighbouring co-ordinates for the desirability of positions
and place at the best position according to the scores to solve the
problem of small discrepencies in the actions.
If action given by RL-agent is infeasible, then let the heuristic search
for a position in the search space.
If no position is found by the heuristic too, then RL-agent was correct
and hence no penalty.
If a feasible position is found by the heuristic, place the box at that
position and penalise the RL-agent.

42 / 50

Different Ideas we tried! Imitation Learning

Result: Policy π
Input: Policy π learned from Behavioural Cloning;
Initialise: empty replayBuffer, searchSpace while episode num < tot episode do

while episode not done do
get at = (i , j) = epsGreedy(π(st));
search in a square region(searchSquare) of (i ± 5, j ± 5) for maximum stability score;
(x , y) = argmax stabilityScore(searchSquare);
if (i , j) is feasible then

;
else if elseif condition then

something elseif ;
else

something else ;
end

end
episode+ = 1;

end

43 / 50

Conclusions

Conclusions

Heuristics + RL works very well.

State Representation choice is very important so that the agent can
learn co-relations between:

State and actions taken.
Top-view of container and box dimensions.

Could use the ’Prediction of Stability Scores’ method in future work
for improving speed.

44 / 50

Possible ideas to try!

Possible Ideas to try further!

One of the biggest problems is to make the agent learn co-relations
between the state and the action taken. So making the state
representation as informative as possible is important.

Different State Representations:
Top-view of container and top-view of box (CNN)

For top-view of the box, use some kind of attention mechanism to
neglect the zeros in the array.
Use past four frames of the top-view and past four boxes added.
Use the difference of past four consecutive frames so that the agent
can co-relate between actions and states.

Top-view of container and (l , b, h).

Concatenate (l , b, h) in some layer but with batch-norm for both
channels (top-view and dimensions) before concatenation.

Autoencoder:

Instead of maxPooling or Aggregate States function to reduce the
dimension, can train a convolutional autoencoder and take the latent
space representation as the input to the policy networks.

45 / 50

Possible ideas to try!

Another problem with policy based methods was that the agent could not
learn co-relations between the top-view of the container and the current
box dimensions.

Instead of just getting the co-ordinates of the position (i , j) to place
the box, let the agent learn to give
(i , j), (i + b, j), (i , j + l), (i + b, j + l) so that the agent is forced to
learn co-relations between the top-view of the container and the
current box dimensions.

46 / 50

Possible ideas to try!

Hierarchy Model:

Initially just train Macro so that it learns to choose quadrants.

Then train Micro and Macro by updating Micro much more
frequently than Macro.

Keep on adding agents till the action of the last agent is down to the
smallest resolution possible.

Can use Option-Critic Algorithm8 for the hierarchical model, because
of the temporal-abstraction provided in it.

Also, can try using the algorithm in the Growing Action Spaces9

paper.

8Bacon, Harb, and Precup, “The Option-Critic Architecture”.
9Farquhar et al., “Growing Action Spaces”.

47 / 50

Possible ideas to try!

Behavioural Cloning

Instead of just cloning actions, we can clone actions and stability
scores so that the agent can learn that even with small differences in
(i , j) the stability scores vary a lot.

Result: Policy π
random initialization of π ;
while episode num < tot episode do

generate episode(s, a∗) with the optimal actions for 100% packing ;
get action and stability score predictions: a,S = π(s) for states in

episode;
get actual stability score S∗ at co-ordinates s;

L = ‖A− A∗‖2
2 + ‖S − S∗‖2

2;
backprop;
episode+ = 1;

end

48 / 50

Possible ideas to try!

Acknowledgements

Harshad, Ansuma, Richa and Hardik for all the help and suggestions.

RISE Lab, Indian Institute of Technology Madras for the compute
resources.

49 / 50

Possible ideas to try!

The End

50 / 50

	The problem statement
	Why Reinforcement Learning?
	Related Works
	Assumptions
	Reinforcement Learning Background
	Different Ideas we tried!
	Value based methods
	Policy based methods
	Imitation Learning

	Conclusions
	Possible ideas to try!

